SPECTROSCOPY AND DYNAMICS OF NEAR-INFRARED METASTABLE SPECIES IN SOLUTION PHASE

Pi-Tai Chou and Ching-Yen Wei

Department of Chemistry, The National Chung-Cheng University, Chia-Yi, Taiwan, R.O.C.

Through the development of ultrasensitive near-infrared (NIR) detecting systems we have opened up a new territory both on NIR spectroscopy and dynamics in solution phase. We have explored the O₂ $^{1}\Sigma_{g}^{+} \rightarrow ^{1}\Delta_{g}(0,0)$ 1930 nm, $^{1}\Sigma_{g}^{+} \rightarrow ^{3}\Sigma_{g}(0,0)$ 765 nm and O_{2} dimol $(^{1}\Delta_{g})_{2}$ \rightarrow ($^3\Sigma_{\rm o}$)₂ (0,0) and (0,1) at 634 and 703 nm emission, respectively in CCl₄. Consequently, the photophysics of ${}^{1}O_{2}$ dimol $(({}^{1}\Delta_{g})_{2})$ and $O_{2}({}^{1}\Sigma_{g}^{+})$ states in solution has been studied in details. The quantum yield of $O_2^{-1}\Sigma_g^+ \rightarrow$ $^{3}\Sigma_{g}^{2}$ 765 nm emission was measured to be 1.94 x 10^{-7} , and consequently, the radiative decay rate of $^{1}\Sigma_{g}^{+} \rightarrow ^{3}\Sigma_{g}^{-}$ transition was deduced to be 1.55 ± $0.04~\text{s}^{\text{-1}}$. By comparing the dimol $(^{1}\Delta_{g})_{2} \rightarrow (^{3}\Sigma_{g})_{2}$ emission intensity with the tetra-tert-butylphthalocyanine delayed fluorescence induced by a twostep energy transfer from the O_2 ($^1\Delta_g$) state, a lower limit of the dissociation rate constant of the dimol was estimated to be (5.2 ± 0.3) x 10¹⁰ s⁻¹ in CCl₄. On the other hand, through the study of Nile Blue A delayed fluorescence induced by energy transfer from the ¹O₂ dimol, a radiative lifetime of (1.2±0.3) x 10³ s⁻¹ for ¹O₂ dimol was deduced in CDCl₃

In another approach, spectroscopy and dynamics of $I(^2P_{1/2})$ in solution have been investigated via the iodine atom $^2P_{1/2} \rightarrow ^2P_{3/2}$ emission in solution. The resulting emission spectra in the region of 1200-1600 nm reveal cooperative electronic-vibrational iodine-solvent transitions, furnishing insight into the atom-solvent interactions. The dynamics of energy-transfer between $I(^2P_{1/2})$ and 1O_2 in solution were first studied with detailed kinetics presented.