Triplet Energy Transfer and Triplet Exciplex Formation of Benzophenone

Haruo SHIZUKA Department of Chemistry, Gunma University Kiryu, Gunma 376-8515, Japan

In the course of our studies on excited proton transfer reactions with proton-induced quenching¹⁾, we found hydrogen atom transfer (HT) from trilet 2-naphthylammonium ion $(NpNH_3^+)$ to the ground benzophenone $(BP)^{2)}$. The HT reaction from triplet naphthol $(^3NpOH^*)$ to BP is shown to proceed via a triplet exciplex $^3(NpOH\cdots Bp)^*$.³⁾ At the initial event, triplet naphthalene derivatives $^3(NpX^*)$ are produced by triplet energy transfer of $^3BP^*$, and then the triplet exciplex $^3(NpX\cdots Bp)^*$ is produced.⁴⁾

Deatailed studies on triplet energy transfer (TET) of BP competing with other processes and also dynamic behaviors of $3(NpX\cdots Bp)^*$ have been carried out by means of nanosecond laser photolysis at 355nm.

(1) Triplet-Triplet Energy Transfer (TET)

In the ${}^{3}BP^{*}$ and NpOH system, TET, HT and induced quenching (IQ) take place competatively. In contrast to the prediction of Dexter Theory, the TET rate (k_{TET}) increases with increasing the dielectric constant (dc) of the solvent used, while the HA rate is reduced. For IQ, the k_{IQ} value is independent on dc. The solvent dependence of TET is interpreted in terms of not only the exchange mechanism (Dexter Theory) but also the dipole-dipole mechanism (Forster Theory), that is, the lowest ${}^{3}(n,\pi^{*})$ state of BP is perturbed by ${}^{1}(\pi,\pi^{*})$ due to that the energy gap between them becomes relatively small in polar media.

For the $^3BP^*$ and NpNMe₂ system, the TET efficiency (ϕ_{TET}) is obtained as 0.58 ($k_{TET} = 6.4 \times 10^9 M^{-1} s^{-1}$) and ϕ_{IQ} is 0.42 in acetonitrile (ACN), whereas in ACN:H₂O (4:1 v/v), ET occurs very effectively ($\phi_{ET} = 1$). Similarly, ET from NpO⁻ to $^3BP^*$ occurs with $\phi_{ET} = 1.8$)

From HT reactions of ³BP*, HORNH₃⁺, HT is shown to be protic hydrogen atom transfer⁹. For the IQ process is shown to be intersystem crossing of a triplet collision complex (i.e., a short-lived triplet exciplex) to the ground state by the experiments of the heavy atom effect.¹⁰