B-5

Reversible Inhibitory Effect of Hg²⁺ on the Microsomal H⁺-ATPases

Dae-Seop Shin,* Kwang-Hyun Cho, and Young-Kee Kim Dept. of Agricultural Chem., Chungbuk Nat'l Univ.

H⁺-ATPases play major roles in various cellular physiology. In order to characterize the effects of heavy metal ions on the activity of H⁺-ATPases, microsomes were isolated from the roots of tomato grown hydroponically. The activity of microsomal H⁺-ATPase was measured by an enzyme-coupled assay. Hg²⁺ inhibited the activity of microsomal H⁺-ATPase as a dose-dependent manner, Fe³⁺ and Zn²⁺ inhibited the activity although they also blocked the activities of enzymes used in the assay, and Cs⁺ and Ba²⁺ showed no significant effect. The effects of Hg²⁺ were evaluated to be inhibitory on the activities of both the nitrate-sensitive and the vanadate-sensitive microsomal H⁺-ATPases. The Hg²⁺-induced inhibition was reversible since the addition of dithiothreitol completely suppressed the inhibitory effect of Hg^{2+} . In the dose-response of Hg^{2+} , the total activities of microsomal H⁺-ATPases were inhibited at concentration of Hg^{2+} above 10 μ M and completely inhibited by 1 mM Hg2+. Apparent Ki values of Hg2+ on the nitrate-sensitive and the vanadate-sensitive microsomal H⁺-ATPases were 58 µM and 80 μ M, respectively.