B-4

Inhibitory Effects of Monovalent Cations on the Microsomal Ca²⁺-ATPase in Tracheal Epithelial Cells

Kwang-Hyun Cho* and Young-Kee Kim Dept. of Agricultural Chem., Chungbuk Nat'l Univ.

Two types of vanadate-sensitive Ca2+-ATPases have been characterized in the microsomes of tracheal epithelial cells, a high affinity vanadate-sensitive (HAVS) and a low affinity vanadatesensitive (LAVS) Ca²⁺-ATPases. The LAVS Ca²⁺-ATPase was sensitive to thapsigargin, implying that it is an ER/SR-type Ca²⁺-ATPase. Both HAVS- and LAVS-ATPases mediated microsomal ⁴⁵Ca²⁺ uptakes and their ⁴⁵Ca²⁺ uptakes were sensitive to vanadate with Ki values of 4 μ M and 700 μ M, respectively. When the effects of various monovalent ions were measured on the microsomal ⁴⁵Ca²⁺ uptake, K⁺ and Na⁺ inhibited the uptakes by 50% and 68%, respectively. The monovalent ion-induced inhibitions were dose-dependent and corresponded to the most of the active uptake. The K⁺-induced inhibition on the uptake was suppressed by thapsigargin and was independent of 100 µM vanadate; however, the Na⁺-induced inhibition was slightly decreased by 100 μM vanadate and independent of thapsigargin. These results suggest that K⁺ prefers to inhibit LAVS-ATPase and Na[†] dose inhibit to HAVS-ATPase.