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Abstract

Forecasting and extrapolation for time dependent
phenomena by using Multi layer neural network has
been studied. We calculated values of a function at short
intervals, and made one dimensional vector whose
elements were a partial gather of the values. If there is
anything same as the future of the functions exists in the
fragment set, it is possible for us to have an advanced
precision extrapolation. Otherwise, if the approximate
function of the primitive function can be constructed by
learning the short interval in the network, the precision
of extrapolation also can be well realized.

1. Introduction

Many studies of the extrapolation for time
dependent phenomena have been published[1]. In the
studies, there were some methods that are adopted
neural networks. Using neural networks, explicit
descriptions (functions) are not necessary. Futures of
phenomena are predicted from observed data only. It is
very useful and practical, but the usefulness is a defect
at same time. If explicit functions are unknown, it is
hard to calculate precision of extrapolations. We often
find examples of prediction in published papers[1], but
hardly discover examinations using neural networks. We
consider that the neural network is one of functions. The
function is defined at learning data, and it is discrete
essentially. But we use it as continuous, and make
predictions. It is unreasonable. If the neural network is a
continuous function, its differential should be defined.
Where we don't consider fractal functions. The explicit
Then,

function characters near discrete points of learning data

differential representation is published [2].
are evaluated by the differential. The fact makes a
discrete function into continuous, at least, an index for
predictions is got.

2. Multi layer neural networks

We used a neural network[3] without feedback
loop, whose structure is three layer. In the layer

structure, informed propagations are following.

{x1,x2,....xn} = X

yi=2Vjixi

pi=t(yj)
where a vector {x1,x2,...xn} has an individual
information, and its suffix corresponds to numbered
neurons in the first layer. The neurons don't include bias
ones. [We substitute the bias neurons for threshold-
values of actions of neurons.] Suffix "i" and "j" are used
for 1st and 2nd layer, respectively. Vij is a matrix of
connection weights between neurons in 1st and 2nd
layer. "yj" is a variable as temporary defined. And () is
a function simulated a neuron, which must be a
differential function. If it is not differential, following
learning equations are not defined. We name the
function as neuron-function. "pj" is a vector for output
of neurons in 2nd layer. Thus, we got following
relations for informed propagations between 2nd and
3rd layers.

{p1,p2,....pm}=p

qk=2 Wkjpj

ok=g(qk)

{01,02,...0k}= 0
Where WKkj is a matrix of connection weights, and g() is
a neuron-function. Suffix "k" is used for 3rd layer, so a
vector {01,02,...0k} is output for neurons in 3rd layer. In
network, an information
{x1,x2,....xn} is transformed into a vector {o01,02,...0k}.
Where dimension of the vector is converted into

the neural individual

different one, therefore, we must take care of the
transformations in cases of "n < k" and large "m"-
values.

These relations are realized in one individual
input/output datum, and the relations also stand up in
case of plural data. Thus, we write as following.

x—=>{xu}, p=>{pu}, o~>{ou}
In the multi layer neural network, a corresponding
relation is organized.

{xuyefou)
The relation is not a one-to-one correspondence.
Followings are allowed. ‘

{our={ovi=... ={0%}

But, next relations are not done.
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Differential coefficients between output and input are
dok/9xi=3 Wkjg(q)) Viif (yj),

where f and g' are differentials for f and g functions. By
using vector
do/Ax =Wg'V "
The neuron-functions f and g are sigmoid functions
generally. But it is desirable that the functions are

representations, we get

replaced by other ones. We often replace g-function
with linear function. Such neural network is called ANN,
which is excellent to extrapolate on various phenomena.

3. A recurrent representation for functions

3.1 Takens's embedding theorem
Takens' embedding theorem teaches us possibility

for the short range prediction of time series data gotten
by chaotic phenomena. The embedding theorem shows
that the trace described by multi dimensional variables
is calculated by one kind of variable in them. It is
impressive and extensions of the theory are broad and
general. Principles of the theory are based on the
Jacobian matrix defined nearby the last point. It is
possible that the principle is extended by using facilities
of neural networks. The neural networks evaluate status
around learning points from all data, and they are not
local but global. Therefore, we believe significance in
investigations of the prediction use of neural networks.
3.2 A recurrent representation for functions

We investigate a recurrent representation of functions
in order to eliminate periodic conditions for functions.
The representation is gotten from following facts,
(1) Sampling values of function are finite vector
{x1,x2,....xn},
(2) A set of partial vector of the vector is written as
{{x1,x2,...xk},{x2,x3,...xk+1}, .....},
(3) Elements of the set can be corresponded to a scalar
series {xk+1,xk+2,..} as following: {{x1,x2,..xk}<--
>xk+1,{x2,x3,..xk+1}<-->xk+2,....} They are set of
partial vector and scalar series, and fragmentations of
functions, which are learning data set for a neural
network simultaneously. A property of neural networks
combines a vector with another, which includes a scalar.
That is {xixi+l,...xi+k-1}-->xi+k, where i=1,2,.... The
relation is equivalent to a local prediction or fragmented
forecasting. If the last partial vector is written as
{xj,xj+1,...xj+k-1}, and the corresponding scalar is xj+k.
In that case, what kind of character does the vector
{xj+1,xj+2,...xj+k} have? The {xj+1,xj+2,..xjtk} is a
new undefined vector, but it is also an input datum for

neural network. Therefore, a new scalar is calculated
from the input datum. Is the scalar written as xj+k+1? In
generally, it cannot be allowed. But if the sampled
function is periodic and the new vector is included in
learning data set, it will be allowed. In such a situation,
the calculated scalar is xj+k+1, and a new vector
{xj+2,xj+3,..xjtk+1} is
prediction.

also used for advanced
These iterative series describe a periodic
function implicitly. We call the iteration as a recurrent
representation for the function. When the representation
is valid, a multi layer neural network is nearly equal to

the sampled function.
4. Precision for recurrent representation

In neural networks, input data are multi
dimensional. In order to simplify following discussion,
we put the multi dimensional data on a multi
dimensional space. From now on, input data are points
on the space, so we write learning data as learning
points.
4.1 Fractal dimensions
We found an examination for the prediction by

using neural networks. It is based on the fractal Brown's
function that is a statistical extension of the fractal
dimensions.
FB(y)=probability[|1/dx|**H  {f(x+dx)-f(x)} <y]
The function "FB()"is a distribution function, and is
determined by observed data. Where a variable "H" is
related with the fractal dimension, whose details are
listed in [2]. The "H" variable is an index that
determines reliability for the prediction. It is effective to
economic forecasting. However, the index shows linear
responses between the linear and random changes. We
are sure that the responses are not appropriate for
precision index. So we consider a new non-linear index.
4.2 Euclid distance

When sigmoid functions are adopted in neural
networks, output responses of the neural network near
leamning points are roughly equal to that of the points.
And Euclid difference increases monotonously with
distances from the learning points. The fact suggests
implicitly that precision for the recurrent representation
can be estimated by the distance. But the distance would
not be quantitative index, because of the monotonous
discover
quantitative variance around the learning points, we are

increasing only. Because we cannot
sure that Euclid distance is Oth order approximation for
the precision. The explicit formula "d" for the Oth

approximation is, d=min{D1,D2,...DN}. Where each
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"Di" is,
Di= {3 j(xj-xi)**2+(xi+1-xj+1)**2+... +(xj+k-1 - xi+k-
1)**2}**0.5, and {xixit+l,..xitk-1} (i=1,2,..,N) is the
learning data, and {xj,xj+1,.....xj+k-1} (=1,2,....N) is
an input point for prediction.
4.3 Differential distance

Revising the defect for the variance around the
learning points, we use differential coefficients for
neural network. By using analogical derivations for
Taylor's expansion, we get following a scheme,
{89,...,8jtk-1}={(xj-x1),(xi+1-xj+1),..,(xjtk-1 - xi+k-1)}
"i" means the nearest point from the input
point.  Vector  representation is, &=X'-X,
A=(30/3 x)? &/1! +(@**20/dxax) [6x&)2!
+ ...., where symbol " X" means outer (tensor) products
for the vector. If the ANN is used, diagonal elements of

where index

the second term of A are vanished. The scalar "A"
corresponds with Euclid distance. This scheme is valid
on the learning points, but is invalid on far from the
points. Such situations will be found during calculations
to predict. So we are sure the index A is 1st order
approximation.
4.4 Invalid for prediction

We defined the nearest point from an input point
for prediction, whose index was "i". Similarly, the index
of the nearest point for next prediction is defined, and it
The location of the index "i"™ should be
"i", or be equal to "i". We write the

1s "i" here.
onward from
condition as "i' >=1i". In leaming process of the neural
network, such a sequent is not explicitlty. However,
when we consider the recurrent representation for the
function, the sequent is included in the consideration
implicitly. If the sequent property is break, it is sure that
a new aspect is arisen in the prediction. The prediction
includes new information which are not found in
learning data. Therefore we should reject the prediction.

In ANN only, the output is out of range [0,1]
because of linear "g"-function that is a neuron function
in the 3rd layer. If the case happens, it shows that the
prediction contravenes the definitions for the neural
network. Then, we should regard the prediction as
invalid.

4.5 Two conceptions for prediction

When we forecast phenomena by using neural
networks, at first we construct a neural network by
learning equations. The forecasting are evaluated based
on the constructed network, at the time there are two
choices for adopting prediction data.

One is used last observed data just before the
forecasting. The conception is called as "one[4,5] step

ahead prediction” or "short range prediction". It is
similar to Takens' embedding theory. But, in the
prediction principle, a basic quantity is not
corresponded with local information such as the
Jacobian. Moreover, the quantity is not got by the last
data, but by information from rather past data. Then, it
is somewhat extension for Takens'.

The other is used output data calculated only by the
neural network. The conception is called as "long range
prediction”. It is out-of-range of Takens' embedding
theory, whose efficiency is only examined by numerical
calculations. It is natural that the forecasting from the
former are higher precision than that of later.

5. Introducing hypothesis

Above mentioned the forecasting by using neural
networks are a reasonable extension based on Takens'
embedding theory. But there is a limitation on the
prediction, because only observed data are used and is
not done the properties of phenomena as a hypothesis.
Usually introductions of the property have rejected in
the traditional way. We find that arbitrariness is arisen in
the introductions, and have avoided that. However, we
are convinced of necessity for the prediction, and as far
as we know, a hypothesis is introduced without the
knowledge. This is a problem we cannot avoid, so we
will discuss them mathematically, which a hypothesis is
introduced under the multi valued logic.

5.1 One-body operators for multi valued logic

There are many operators to calculate multi valued
logic. In them, we consider the one-body operators at
first, which are not-operator (~) and rotation (R). The
not-operator operates the fragments of input vector, and
generates new fragments as

~{xixi+l,....xi+k-1}={1-xi,1-xi+1,...,1-xi+k-1}.
Similarly the scalar value xi+k is translated into 1-xi+k.
The operations are accepted when observations are
symmetric for the mean value.

The rotation operator operates as, R {xi,xi+1,...,xi+k-
1}={S+xi,S+xi+1,...,S+xi+k-1}, where "S+" means the
addition of a constant "S" to the x-elements. The results
seem to be equal to the value-shift, however the
operation is based on Post's not-operation whose
character is a kind of rotation. The operations are
accepted when similar phenomena are observed on the
different bias conditions.

5.2 Two-body operators

We consider the two-body operators now. They

are "or-" (|) and "and-" operators (&). The "or-" and
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"and-" operators operate the fragments as following,

{xixi+],....xi+k-1}|{xj,xj+1,...xj+k-1}=
{max(xi,xj),max(xi+1,xj+1)... max(xi+k-1,xj+k-1)},
xitk | xj+k=max(xi+k,xj+k),

{xixi+l,... xitk-1} & {xj,xj*+1,... xj+k-1}=
{min(xi,xj),min(xi+1,xj+1)...,min(xi+k-1,xj+k-1)}, xi+k
& xjtk=min(xi+k,xj+k). These operations are accepted
when turndown or turn-up is not observed yet, but they
are expected.

6. Conclusion

We investigated followings,
(1yDifferential coefficients for multi neural networks
(2) Recurrent representations of functions,
(3) Prediction method on use of neural networks,
(4) Precision of the prediction
We introduced (5) a working hypothesis in order to
increase learning data, and discussed that the hypothesis
was right or wrong. We test these discussions during
calculations for predictions of Lorenz's and Rossler's
chaos.
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Figurel. forecasting for Lorenz' chaos

The left side of a dotted vertical line means a learning
term. The right side is forecasting. Number of the
learning data is 32, and forecasting points are 120. In
the first graph, the solid curve is results from a neural
network, and the plotted curve is true values of the
chaos. In the second graph, the solid curve is differences
between forecasting values and true ones.

Figure2. forecasting for Rossler' s chaos
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