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Abstract

Subspace-based state space system identification
(4SID) methods have been demonstrated to per-
form well in a number of applications, but the
properties of these have not been fully analyzed
or understood yet. For applying the methods, no
assumptions on structure of realization are needed
and any coordinate transformation is allowed for
the estimates. This is one reason why many kinds
of properties expected for identification procedures
have not been clarified yet. We illustrate, by using
Schur complement, an interpretation of the K ma-
trix yielded by the QR factorization in the 4SID
procedure. The results in this paper can be useful
for analysis of properties of parameters obtained
by 4SID methods.

1 Introduction

The 4SID methods have attracted much attention
because of being essentially suitable for multivari-
able system identification. The methods directly
realize system matrix of state space model from
input-output data without intermediate input-
output expression such as impulse response or dif-
ference equation. The methods are essentially
characterized by determination of the extended ob-
servability matrix from input-output data by us-
ing QR factorization and singular value decompo-
sition. Then we consider the QR factorization on
the procedure of the 451D methods™"2] and show
an iterpretation using Schur complementl. We
study for the case of noise-free, white noise and
colored noise, respectively.

2 4SID methods

We consider a discrete time linear system repre-
sented by

Try1 = Azp + Bug

_ (1)
yr = Czx + Duy,

where z; is an n dimensional state vector, ux m
dimensional input and yx ! dimensional output, re-
spectivly. The system matrices A, B, C, and D
have appropriate dimensions. Furthermore, it is
assumed that the model is minimal that is, the
system is completely reachable and observable.

Let ¢ > n, N > i, and Hankel matrix Uy ;n of
{ug} is defined by

Uk Uk41 Uk4+N -1
Uk+1 Uk+2 Uk+N
UkinN = . .
Uk4i—1 Uk Uk+N4i-2

and Y ; N is defined in a similar way.
Then, we have

Yeinv =TiXen + HUkin (2)

from equation (1) where

XN = [Tk Tky1 0 TheN-1)
C
CA
r; = .
C A1
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D 0]
CB D
H; = : ,
CA—?B CB D
where T'; is called the extended observability ma-
trix. We will omit the subscripts for U and Y
unless otherwise mentioned.

The 4SID methods directly realize the quadru-
ple of system matrices [Ar, Br, Cr, D] of state
space model from input-output data {ug, yx}. The
system matrices [Ar, By, Cr, D] are defined as

[Ar, Br, Cr, D)= [TAT™', TB, CT™!, D]

where T is a similarity transformation. Let the
input u; be such that the following condition is
satisfled.

rank[ﬁé}:mi+n (3)

A 451D procedure can be described as follows.
[ Algorithm Al ]

stepl Compute QR factorization of a matrix

[UT YT)T, as in

el mll@&] e
Y Ry Ra Q2

where R;; and Ry, are lower triangular, and
QT = Inmi, Q2Q7 = I, Q1Q] =O.

step2 Compute Singular value decomposition of
Ry as given in (4) of stepl, i.e.,

FT

S, O
] EhT | @

Ry = |E, B3] [ 0 S,

Here the dimension of S,, is equal to the one of the
system.

step3 Compute the Cr and Ar from F, as given
in (5) of step2

C’T - En (1:7:’ :) (6)
EWMAr = EPY (7)

where F, (1:1, :) denotes the first | rows of E,, E,(Ll)
is the submatrix composed of the first (¢ — 1)l rows

of the matrix F, and E7(12) is constructed by the
last rows in a similar way.

step4 Solve the following equation for the Bt and
D.

'3
“ls2] e
&

where &;, 9;, and U are defined by the following
relations:

[& & & | = (EHT Ry RY!
[ #1 ¥ o] = ()T
I T X
";[)2 "/)i I] 0]
.= -y [ o EW J
(2 0

Here, the size of &; (1 < j <) and 9¥; (1 <j <)
is (Ii — n) x m and (It — n) x [, respectively. _

3 An interpreation of QR
factorization
In this section, we illustrate a relation between the
extended observability matrix and the R matrix

yielded by QR factorization in the 4SID procedure,
by using the Schur complement.

Definition of the Schur complement!!

Suppose we partition 4 € R®*"

Ay AT ]
A= 12
[ Az Az

where Ay is r-by-r. Asssume that A is nonsin-
gular. The matrix S = Ay — A21A1_11A1T2 is called
the Schur complement of Ay, in A.

3.1 Noise-free case

First, for the following matrix constructed from
input-output data

[g]ir vi= (3 W] o

The Schur complement S; of UUT in (9) is repre-
sented by
S =Y -UvTwuT)ytuyy?

10
=Ynsy? (10)
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where Iy = UT(UUT)~'U and I}y = I - M.
Here S in (10) can be rewritten by

S1 = Ry2QTQ4RY,

11
— RnRL, (11)

using (2) and (4). From results of (10) and (11),
we have

YIgyT = Ry RY, (12)

Therefore we see that Ry RY, is yielded by com-
puting YHﬁYT.

3.2 White noise case

It is assumed that the output of the deterministic
system is perturbed by the zero-mean white noise
vg, of variance o2. Then the output equation reads

2L = Yr + Uk (13)

Here Hankel matrices Z and V of {zx} and {vi}
are defined in a similar way as in U, respectively.
From equation (13), we have

Z=Y+V (14)

Hence, Y in the equation (9) is replaced by Z, (9)
can be rewritten as

[U][UT ZT]:[UUT UZT

79T ] (15)

The Schur complement Sy of UUT in (15) is rep-
resented by

Z zuT

Sy = zZugzt (16)
= (Y + V)Y + V)T,

Here, using a matrix Rys yielded by computing the
QR factorization of a matrix consisted of U and Z
in a similar way as in (4), the equation (16) can be
rewritten by

S2 = Raa R, (17)
Thus from results of (16) and (17) we have
Ry R, = (Y + V)IG(Y + V)T (18)

Based on the assumption that the input ug and the
noise v; are independent, the following condition
is satisfied:

1
lim —vVYT =0 19
im (19)

N-=co

Consequently, we have
1
N
where the notation A = B means that A asymp-
totically converges to B if the number of data N
tends to infinity.

Therefore the white noise case is asymptotically
treated as the noise-free case in a similar way.

L 1
Ry RL, = TV-YHﬁYT +oil;  (20)

3.3 Colored noise case

We assume that the noise vy defined in (13) is a
colored noise. Using a matrix Rao yielded by com-
puting the QR factorization of a matrix [UT ZT]T
in a similar way as in the case of the white noise,
we have the following as in (20).

1
N
where R,, is a covariance matrix of vi. Since vk
is a colored noise, Ryy is not an identity matrix
multiplied by a scalar. Therefore we introduce an
instrumental variable ®, satisfying the following
conditions:

1 -~ .
—NRzszTz = —YI§YT + R, (21)

lim —ovT = 0,

N—oo

(22)

rank[ u } =mi+p (23)
P
where the size of ® is p x N and p > n.

A 481D procedure using the instrumental vari-
able @ is described as in

[ Algorithm B ]

stepl’ Compute QR factorization of a matrix con-
sisted of input-output data U, Z and an instru-
mental variable @, i.e.

U 1?11 . O Q:l
Y | =| Ba Ry Q2 (24)
@ R3; R3a Rss Q3

step2’ Compute Singular value decomposition of
Ry2RT, as given in (24) of stepl’, as in
5 A S, O )
T — €L n n 25
ity =[5 [ G5, ] [ (FH)T } )
step3’ Using E,, Er, Ry, and R, yielded in
stepl’ and step21, compute the quadruple of sys-

tem matrices [A, B, C, D] in a similar way in
Algorithm A. 4
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We consider a matrix Z which ia a linear com-
bination of U and ®. This is represented by

Z = LU + L,®

U (26)
=[ I Lg][(b]_LQ
where L := [L; Ly ], @ = [UT &7 ]T'. Since
the condition (23) is satisfied, L which minimize
|1Z — Z||% for @ exists uniquely. Here ||-||# denotes
the Frobenius norm. Then L is represented by

L =zaT(QaT)= !, (27)

From the result of (27), we substitute L for L in
(26) to obtain
Z =zoT@aha

_ 71 (28)

where IIg = QT (QQ7)~!Q. - Here we consider a
AT
matrix [UT ZT]

V are not correlative. Therefore we have

. From the assumption, Z and

S T 5T
lim NV[U VA ]—O,

N-—oo

(29)
Suppose the following métrix as in (9)

5]l = | 2]l 7

=5 w2
= g]ng [T 27
_[ovut vzt

| ZzUT ZNoZT

(30)

where Ullg = U. Thus the Schur complement S;
of UUT in (30) is represented by

Ss = Z(Ilg - UT(WUT) )27

= Z(Ilg - My) 2T (31)
= zn$zt
Here
o = 0T (el 1o
=vT(wuhH-'u (32)
+ 5T (g o)t o1y.
Then we have
S, = zngeT (engel) tengzT  (33)

From the result of (24), the equation (31) can be
rewritten as
53 = E22‘R%12A"1R32Rg‘2 (34)

where A = 1%321%:{2 + R33R§3. S3 converges for
N — o0, asymptotically, that is,

1 1
7258 = FiYV—XH(ﬁ@T(QHbQT)‘I
1
X N@nﬁxTr,T (35)

4 Conclusion

In this paper, we have studied the interpretation
of the R matrix yielded by QR factorization in
the 4SID procedure. Using the Schur complement
for the matrix consisted of input-output data, we
have shown the other computation of the R matrix.
The results can be useful for analysing properties
of parameters obtained by 4SID methods.
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