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ABSTRACT

The purpose of this study is to provide the new
method for selection of a close to optimal scalar
control of linear time-periodic system, The case
of scalar control is considered, the gain matrix
being assumed to be at worst periodic with the
system period T. The form of gain matrix may have
various kinds but must have same period, for
example, one of each element being represented by
Fourier series. As the optimal gain matrix I
consider the matrix ensuring the minimum value of
the larger real part of the Poincare exponents of
the system, Finally we present a pole placement
algorithm to make the given system be stable, It
is possible to determine the stability of the
given periodic system without get the analytic
solution, The application of the method does not
require the construction of the Floquet solution.
At present state of determination of the gain
case will

matrix for this be done only by

systematic numerical search procedures.

1. Introduction

Since Floquet theory which is the conventional
method and used widely in the study of linear time
periodic systems , especially in the field of
celestial mechanics. The usual use of Floquet
theory is in determining the stability of a known
periodic orbit. And the study about the control
orbit was

w.[1]
Floquet theory to the problem of designing a

of unstable periodic
Shel ton,

considered by
Wiesel, W. and They applied
control system for a satellite in an unstable
periodic orbit. Stationkeeping near an unstable
periodic orbit has also been studied by Breakwell,
J.V., Kamel, A. and Ratner, M.J.{2] A method for
selection of a scalar control of two dimensional
linear time periodic system has been proposed by
and Zaleski[3] and

quadratic form of Lyapunov function in the motion

Radziszewski utilizes the

equations case having varying coefficients, The

system under consideration may be assigned either

in closed-loop state or in modal variables as in
Calico, R.A. and Wiesel, W.E.[4].
the linear systems which have the time period or
should be

studied in the sense of dynamic stability and

In this paper,

certain time interval necessarily
design method of controller to stabilize the

original unstable systems, The time periodic

systems are easily found in scientific and

industrial fields. For example, the same motion
and movements during time interval are included as
a periodic systems in the large sense of concept.
The Lyapunov stability criteria to satisfy the
energy convergence is basically used and new
technique of pole placement is derived along the
whole time period. The proposition of this
research is the derivation of new criteria of the
stability and technique to design of the
controller to make the system be stable. The
final acquisition of this study is the numerical
procedures to decide the

stability and find the

system’s over all
coefficients of the
satisfy the new

controller{gain matrix) to

stability criteria, The selected form of Lyapunov
function (satisfying the Lyapunov direct method)
is quadratic function and numerical programs will
make the real part of characteristic root of
That's why the
optimization method should be applied to this
method,

procedure,

system equation be minus value,
research, The based on two step
optimization allow to find the
approximate optimal gain matrix. The various form
of controller can be the candidate but the Fourier

series is utilized in this research.
2. Analysis

(1) System Analysis

The general form of autonomous system is
x=fx)
() =x(t+T). The

variable will be expressed as Sx=x(f) —x"(#), and

and the time periodic state vector is

small deviation of the
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the linearized equation is dt(x)—— 6x[x(t)]x

vhere x"(H=x"(t+ 7).
The time-periodic system under consideration is

of the form

x= P(x where x(t))=x,, x&R", t=(t; , ) (1)
where P(t) is periodic with the periodic with the
period T. The state transition matrix @ has the

relationships :

%‘f =P(H® O+ T, )=t t,)C
do(t+ T, ty) _ _dO(t+ty, )

dt dt ¢
AU _ pyocs, t)C= PO+ T, 1)

where C= *7
O(¢, 1)) = Wt ty)e "
=Wt t) = Pt+ T, t)

@w(t'i' T,t0)= at‘f‘ T, to)e_R(H—T_tO)

SP(t+ T 1) =0t t)e " =W t)=1
=S0(ty+ T, t)) = Wty+ T, t)e" ="

Consequently, the state transition matrix and

solution to (1) consistes of a periodically

modulated exponential matrix function., Therefore,
(1) is asymptotically stable if the eigenvalue of

R all have negative real parts, That is

defl Io— R1=0 where Re(p;)<0 , i=1,2,,
(2)

defl AI— T =0 where |2)<1, i=1,2,,
Here p’s are called characteristic exponents and
A’s are characteristic multipliers of matrix

A(t). They have the relationship as :

pi= =i, (3)

These two characteristic numbers are very
important elements to decide the system’'s
stability,

The closed loop state equation of the controlled

system is of the form

x=[AD+ G(HK(D]x (4)
where 1Xn matrix G(t) describes the distribution
of the control in the system nX1 matrix K(t) is
the gain matrix (both matrices are assumed to be
periodic with the same period T). We assume the
elements of the gain matrix to be represented by

truncated Fourier series,

G(D=[g:1() &) — —17 (5)

K()=[k (8) k(D) — —] (6)

— . 27nt
kL =k0)+ Zo[ Ak{n) sin 7}" 7

+ Bk{n) cos 2771'3”]

Until these introductory remark will be utilized

and compared with new criteria which is set with

the Lyapunov stability concept.

(2) Lyapunov function in Quadratic form
stability

utilizes the energy conrgence of the system, The

The Lyapunov concept  basically
total energy of the system is definitely positive
and if the rate of this energy with time is
should be told stable

conditions, the

decreasing, it system,

Using this certain poitive
function(called Lyapunov candidate function) is
chosen first, and the negativeness of the time
derivcative of this function should be checked
secondly. In this paper, the Lyapunov candidate
function is selected as the quadratic form.

Introduce the quadratic form of Lyapunov function

Vx)=xTQx (8)
where Q is the constant and symmetric, positive

definite. Introduce also the generalized norm

[lx]|, induced by the scalar product x’Qx . The

Lyapunov derivative of (7) along solution of (1)

is of the form

ﬂ%‘ﬂ = 2TQx+ xTQx=(Px) TQx+ x TQ( Px) (9)
=xTATQx+ xTQPx=x"(PTQ+ QPx
Multiplying Q! to the PTQ+QP matrix, also

introduce now the auxiliary matrix :

C(H)=Q 'PTQ+P (10)
Due to the periodicity of P(t) the C(t) is
periodic too, The eigenvalues of the matrix C(t)

are the same as these of the symmetric matrix
(PTQ+ QP) and thus they are real,
Denoting by A ..(%) (also periodic) the maximal

eigenvalue of the matrix C(t), the estimation

holds

VD)< Vxexal [ A pay (Dl (11)

(3) Stability criteria

In the previous section, the linear quadratic

Lyapunov  function is expressed by matrix

calculation, And the time derivative of this
function is also calculated simply with the linear

algebra. This is of the form as:
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ﬂ_%J:%?B)l (12)

Using the linear algebra calculation, the results

v
14

are

Y —dVdt QU PTQ+ Pr=A)  (13)

Amin[QT'PTQ+ PICA(HL Ay [QT'PTQ+ P]  (14)
vV _

v = A(Ddt (15)

Vix(8) = V(xo)exp[ftt/l(t)dt] (16)

tim A [ At (1= )]

lim Vix(9]= VIxO)] e an

In this result, matrix C(d) and the eigenvalue of
this matrix is the main factor in determining the
stability of system. The relationship between

periodic system equation and the Lyapunov
function(energy function) should be examined by
the Lyapunov direct method and this will be the
main procedures and results. And the final step
is to find the controller to make the original

system be stable with leaving the period.
Replacing t=f+ nT,

1 t
t— to ftoAmm;(_f)jt

1
_Iﬂﬁﬂ A (D dt (18)

LT
=% [ Am(Dat

This equation réveals that if (18) is negative
then V(x(t)) is bounded and converges to zero as
time goes to infinity, The time periodic system
(1) is said to be asymptotically stable if the

following condition holds.

_1 _1 (T B

t—# f,oAmax(t) dt = Tfo Ao (D dt<—¢ (18)
for some &>0 .

Denoting

T
=1Tf0/1m(t)dt .1 get the

estimation of the induced norm at the solution

He( D5 < Hx(O)ls expllAll . (20)

(4) Main Results

The maximum eigenvalue of the matrix C(t) is
the function of many variables including all state
variables and time, matrices K and Q{quadratic

Lyapunov function). Let’'s try to clear this
relationship between A, and related variables

with second order case. The maximum eigenvalue of

the matrix C(t) is of the form

A = T’éa +\/( T’EC) Y+ detC . (21)

By direct computation one can see that the trace
TrC of the matrix C(t) depemds only on the
coefficients of the Fourier series, while the
determinant detC depends on these coefficients as
on the elements of the matrix Q(qy, q12, 421, d2)
TrC= Tr(( t,k,-(O),Aki(l)_"_Ak,-(m), (22)
Bk(1),,,,Bk(m) ,i=1,2

detC= detC(t, k£0), AkL1), , Ak;(m),

Bk(1), , Bki(m), gy, 412, 41, 42) » (23)
i=1,2
where k()= k(0)+ go[ Ak{n) sin nglt
+ Bk{(n) cos Z?t]
This fact implies the two step procedures of

optimization of A . At the first sub step the

quantity /A is minimized while varying the values
of the elements of the matrix Q and freezing the

values of the Fourier series coefficients, At the

second sub step / is minimized while varying the
values of the Fourier series coefficients and
freezing the previously chosen values of the

elements of the matrix Q. This procedure is

continued till the improvement of the value of A
becomes negligibly small. The simplification of

the problem may be achieved by wusing the

Cauchy-Schwartz inequality to approximate the
integral in the expression for A .

In this research, the first selection of Lyapunov
candid function will not satisfy Lyapunov
stability conditions. Two possible representations

of the matrix Q were considered. The first one

utilized the relation Q=M'DM vwhere M is an
orthogonal matrix, D is diagonal one, such that

the element dj;;=1 and dyp>0 . For the second

representation
Q[Bl (24)

the positive definiteness condition is given

directly a— %0 .

The form of the
programming.

matrix Q was selected for
For the first sub step the program
requires the constrained minimization method. The
Box's Complex Method[16] was selected for this
purpose, For the second sub step the Simplex

Method[17] was applied.

3. Applications
The system of the form (1) was selected with the
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goal to determine the gain matrix minimizing the
larger real part of the Poincare exponent.

Example 1,
The system  equation is of the form:
- a2.-[0.1 0
¥ Ax [ 0 —0.1] *
G()=[sint —sinf

_ . _2mnt
k{D=k{0)+ ,,20[ Ak{n) sin T i=1,2

Bk{n) cos 27,?”‘]

The initial gain matrix was chosen as having all

the coefficients equal to zero.

For these values A=+40.1 which shows

for all values of a. The solution shows that
asymptotic stability requires that <] and that
for all values of g<() the value of /A may not be
less than -1,
Rewriting the system in form (2) gives
x=[AD)+ G(OK()lx
P(t) =A()+ G(HK(H)
-1 1
L

For selected series of initial values of

cost
+

][ acost —a sinf]
— sint

'y as
shown at the table 2 the results of procedure
converge with the error of 0.09% to the expected

value of A=—1.

instability of the system.
Table 1. summarizes the values of gains from the Initial Value of ‘a’ A
two step optimization procedure for Example 1.
The resulting Poincare exponent estimate attains -2 -0.9999996
the value A=-—0.10999806<0 showing that the
system is stabilized, -5 -0.9999994
i 1 2
k{0) 0.0918 02195 0 ~0.9998086
Ak(1) ~1.0440 0.0129
Bk(1) 0.0475 0.4837 2 ~0.9991928
Ak(2) 0.1236 -0.0049 : ~0.9993884
Bk(2) 0.4224 0.4305
AkL{3) 0.0562 -0.0138 Table 2, Output Data for Example 2
Bk{(3) 0.3383 0.4781
Ak(4) 0.1055 ~0.0047 4. Conclusions
Bk,-( 4) 0.2163 0.4349 The proposed simple procedure provides an
AE(5) 07579 02270 effective method and tool for control of line'ixr
time periodic systems. Example 2 shows that if
Bk;(S) 0.0411 0.2440 converges to the lower limit of the exact value of

Table 1. Output Data for Example 1

Example 2
The purpose of this example is to prove the

performance of the numerical procedure, The

system quoted after [ ] is of the form (1),

x =P(dx

[ —1+acos’t

~1+asin?t

1—asintcost } x
—1—a sintcost

X2

A closed form solution of the system is known and

is given by

[ x(®) x,(0)

XQ(O)

e !sint

—-e (a-Di

[ etV cost
sint e !cost

x5(%)

the system exponent.

The solutions of the control problem of two
dimensional time periodic system will be provided
in the form of the program calculating close to
The method will

enable selection of the close to optimal, scalar

optimal control parameters,
control of two modes resulting in simpler control
system, It will be assumed that the Fourier
series development of coefficients( K(#) may be

few(fifth
Methods have been developed which allow
broad

Much work remains to be done, however,

truncated after its in this paper)
terms,
the solution to range of interesting
problems,
both in extending the theory to more general
with actual

cases, and in giving experience
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applications of the higher dimensional systems,
Finally, analysis of the gain matrix will be
provided estimating their influence about the
objective time periodic systems. The conclusions
of this project will give certain informations and
lines for control of general

guide periodic

systems,
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