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Abstract : The right half plane (RHP) zeros may cause severe problems, such as undershoots, oscillations and time
delay in the transient response of the systems. In this paper, we formulate a linear quadratic type problem to deal
with the effects of the RHP zeros in the nonminimum phase systems. Based on the LQ formulation, this paper shows
the trade-off relation between undershoot and rising time performances in nonminimum phase systems by using a
new performance index which consists of new state and tracking error. And performances of the proposed method

are shown via computer simulations.
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1. Introduction

Much works have been done to clarify the influence of the
zeros on the transient response of the nonminimum phase
systems to the step type reference input. Specially, RHP
zeros which are nearer to the imaginary axis than poles
cause severer transients, like undershoots, oscillations and
time delay, in the step response. The occurrence of these
phenomenon on the step type reference input is usually un-
desirable in the controlled outputs of the systems. But, it
may be impossible to acquire response without these phe-
nomenon because there exist fundamental limitations on
the achievable transient response of the system with RHP
zeros[4, 6, 7, 9]. Generally, this limitation can be charac-
terized completely by the number and location of the RHP
zeros[9].

It is well known that continuous time systems with an
odd number of real open RHP zeros have the initial un-
dershoot on the step type reference input, i.e., the initial
response is in the opposite direction from the steady state
response[3, 5, 6, 8, 10]. Besides, when the conjugate complex
zeros have even positive real parts, and absolute values of
these zeros are not so large as compared with absolute values
of the poles, the output has so-called Type B undershoot—
the initial response is in the same direction from the steady
state response, but mid-term period of transient response is
in the opposite direction from the steady state response[8).
However, the global characterization of the effects for the
RHP zeros upon the step response of system, both real and
complex, still remains as an open problem[6]. The amount
of the undershoot is related to the rising time, the loca-
tion and the number of the zeros on the nonminimum phase
systems[7]. Thus, we can design controller which has trade-
off relation between undershoot and rising time on the non-
minimum phase systems.

In this paper, a controller design method is proposed to
solve the trade-off problem between undershoot and rising
time. It uses the linear quadratic integral control weighting
matrix with new state and tracking error in controller design
procedure. The new state is used to represent the amount
of the undershoot. Here, we consider only the SISO rational
system characterized by the continuous time strictly proper
transfer function G(8). And, it is assumed that G(s) is both
detectable and stabilizable, with no zeros at the origin of the
complex plane.

integral control, linear quadratic regulator (LQR), nonminimum phase system, right half plane

The remainder of this paper is organized as follows : Sec-
tion 2 induces new state z,,, which represents the amount of
undershoot in case of the system with one RHP real zero. In
Section 3, we consider extensive systems with p RHP real
zeros and 2q RHP complex zeros. In Section 4, we show
trade-off relation between undershoot and rising time using
two examples via computer simulations. The concluding
remarks are given in Section 5.

2. System with One RHP Real Zero
Consider the system with one RHP real zero as follows :

_ Bl(s)

G) = Tt

(—z18+ 1), (1)
where A1(8) = @n8" +@n-18"""' + - +a18 + ao,

Bi(8) =bn-28""2 +bn_3s" 3+  +b15+bo
and 21 > 0. Note that the one RHP real zero of the system
is 1/2z1. Let Gm, (8) = B1(8)/Ai1(s), then G, (8) is a min-
imum phase system because B;(s) is a stable polynomial.
Hence Eq. (1) is then

G(8) = Gm,(8)(—2z18+1)

Gm,(8) - 218G, (8). ©)

Let us define the nonminimum phase system output Y'(s) =
G(8)U(s) and the minimum phase system output Y, (s) =
Gm,(8)U(8). From Eq.(2), we have

Y (8) = Ym,(8) — 218Ym, (s). (3)

Thus the time response of the nonminimum phase system
can be represented by the minimum phase system output
and its first derivative as follows[2] :

Y(t) = Y, (£) — 219m, (2). (4)

Note that ym, (t) itself does not represent undershoot phe-
nomenon since it is a minimum phase system output. Hence
the maximum undershoot can be reduced, if we make a
Um, (t) zero, since z1Ym, (t) cause undershoot phenomenon.
Note that 219m, become large as z is large, therefore G(s)
has a large maximum undershoot.

From Eq. (4), ym has the form

i () = 3 {ums (0) — ()} (®)
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Thus a new state z,,,(t) is defined as difference between
Zm, (t) and y(t) as follows :

T, (t) y(t) —~ Ty (t) (6)
Cz(t) — zm, (t).

Note that zm,(t) is not observable and that it should be
constructed as stable. And the integral of the error between
the reference input and output is generated by the following
equation :
er(t) = r—y(t)

r — Ca(t). (7)
Provided that the system state equation for the nonmini-
mum phase system (1) is given as follows :

{ z(t) = Az(t) + Bu(t) (®)
y(t) = Cz(t).

The augmented state equation is then derived from the new
state equation (6) and the error equation (7) as follows :

( £(t) A 00 z(t)
ém,(t) =] C -1 0 Tony (£)
ér(t) -C 0 0 er(t)

B 0

< +{ 0 Ju@®+| 0 |r 9)
0 1
z(t)
yt) =[C 0 0] lxml(t) :l
{ er(t)

Now LQR theory can be used to generate a state feedback
for the augmented plant[1]. e; is included in the augmented
system to solve the tracking problem. The cost function
that penalizes the new state and the integral of the error is
as follows :

J= /otf {g;:f(t)Qza(t) + uT(t)Ru(t)}dt, (10)

Q: 0 0
0 Qz., 0|20
0 0 Q.
and R > 0. The control weighting matrix is usually gener-
ated by trial and error, but if Q,,, is larger than Q.,, the
nonminimum phase system output shows small amount of
undershoot at the price of long rising time, and vice versa.
The optimal control is then

where zo =27 (t) =%, (t) eT(t)]T, Q=

58 )
u(t)=—~K(t) | €m (t)

el(t)

o0 (11)
=—[ Kz(t) Kom, (t) Ke,(t) ] [ Tm, (t) }
e;(t)
where K(t) = [Kz(t) Kz, (t) Ke,(t)] is the optimal feed-

back gain matrix. This control can be written explicitly in
terms of the new state and tracking error as follows :

u(t) = —Kz(t)z(?)
Kz, (1) fo {y(t) — zm, (t)} at (12)
K () Jo {r - vt)}at,
which shows that the control includes the tracking error

and the difference between y(t) and zm, with an integral
feedback.

3. General Nonminirnum Phase System

Consider the system with p RHP real zeros and 2¢ RHP
complex zeros as follows :

_B@) T

]

H( z,s+1)H( —zjs+1)(-z;s+1), (13)

i=1

where A(8) = ans™ + an—18""' + .- +a18+ao,

B(8) = bny—18™ ! 4 bp, 28" % 4. 4 b18+ bo,
ny=n—p—2q, z; > 0 and real(z;) > 0. Note that the p RHP
real zeros of the system are 1/2;, 1/22, - - -, 1/2, and 2¢ RHP
complex zeros of the system are {1/z1,1/z1}, {1/22,1/72},

-+ {1/24,1/Z,}. Let Gm(s) = B(s)/A(8), then Gn.(3) is a
minimum phase system because B(s) is a stable polynomial.
Hence Eq. (13) is then

G(8)=Gm(s) ﬁ(—z.-s +1) ﬁ(—zjs + 1)(~z8+1). (14)

i=1 j=1

Let us define the nonminimum phase system output Y'(8) =
G(8)U(s) and the minimum phase system output Y (8) =
Gm(8)U(s). From Eq. (14), we can see that

Y(8) = Ym(8) + a18Ym(s) + -

+Qpi2g-1 gPtu-ly, + Otp+2q8p+2qu (s), (1)

where the coefficient a1, -+, apt29—1, Gp42, Can compute
from Eq. (14). Thus time response of the nonminimum
phase system represented by the linear combination of min-
imum phase system output and its (p + 2¢)th derivative as
follows :

y(t) = ym(t) + 1m(t) +
(p+29— 1)

(16)
+aQpt2g—1Ym

+ Qpiag y(P+2¢1) (t).

Similarly as the system with one RHP real zero, we can

make a new state Tm(t) = [Zm, () Tma(t) -+ Tmyt2q ]T
as follows :
= Apzm(t) + BnCz(t),
0 1 0 0 0
0 0 1 0 0
where Ap=| : : . : :
0 1 0
2 2 +2
-1 —(pi}‘f" 1) (,,ié'qiz) -5 (Y
and B, = [0 0 - ] . Note that the matrix
A, has repeated poles a.t s = —1 in the complex plane.

And the integral of the error between the reference input
and output is the same as the case of the system with one
RHP real zero. Therefore the augmented state model is the
combination of the system state equation, the new state
equation and the state equation for the integral of the error
as follows :

z(t) A 0 o z(t)
im®) | = | BnC Am 0 || 2a(®)
ér(t) -C 0 0 er(t)

B 0

$ + ] 0 [uw(@E)+]| 0 |r (18)
0 1
xz(t)
yt) =[C 0 0][zm(t)].
L er(t)
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The cost function is

= /'tf {zaT(t)Qza(t) + uT(t)Ru(t)} dt, (19)
[1]

Q: 0 0
where z4(t)=[z"(t) zh(t) ef(t)]T, Q= [ 0 Qz, O ]?_0
0 0 Q.

Qe
and R > 0. The optimal control is then

z(t)
u(t) = ~K(¢) [ zm (t) ]

er(t)
z(t)
=~ [Ks(t) Ka,(t) Ke, ()] | zm(t) (20)
er(t)

- —K ()=(0)
om (t) fo {Anzn(t) + Bmy(t)} dt
Ke,(8) fo {r - y(®)} dt,

where K(t) = [Kz(t) Ka,,(t) K, (t)] is the optimal feed-
back gain matrix.

4. Simulations

In this section, we deal with two examples to exemplify
the usefulness of the proposed method. One is the case for
the system with one RHP real zero, and another is the case
for system with one RHP real zero and two RHP complex
Z€eros.

4.1 System with One RHP Real Zero
Consider the system with one RHP real zero as follows.

66 = GINE=B+IG=D
s+1)(8—2)(s+3)(8~
= —-2s8+41 (21)
8" —26° —13s° + 145+ 24
Note that the given system has poles at 8 = —3, —1, 2,
4 and zero at s = 0.5 in the complex plane. Thus the

system occur large initial undershoot phenomenon because
the RHP zero is nearer at the imaginary axis than poles and
system with odd RHP zero. The system can be represented
by the controllable canonical form as follows :

N - OO
-_oo®

(22)
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(a) Step Response

Figure 2: Q,,,

(b) Control Input
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(a) Step Response
Figure 3: Q;,, =1 and Q,, =15

{b) Control Input

Table 1: The Closed Loop Poles and Zeros

(a) Step Response

Figure 1: Q..

(b) Control Input

:erzl

Closed Loop Poles Closed Loop Zeros
~4.6418X1.1980]
Qzpp =1 -1.9205+2.9448;) -1.0000
Qey =1 -0.7091 0.5000
-0.4964
“§.6701LE1.7567;
Qz,, =15 -2.3136:£4.2489) -1.0000
Qe; =1 -0.5006 0.5000
-0.2485
-5.5635X1.7675]
Qazpm =1 -2.2969 4.2700j -1.0000
Qe; =15 -0.9682 0.5000
-0.4998
0 1 00 0 0
0 0o 1 0 00
s 0 0 01 00
e —-24 -14 13 2 0 0}’
1 -2 0 0 -1 0 (23)
-1 2 00 00
Ba—[o o010 0],
0000 0 1],
ca=[1—20000], D,=[0].

Let us take Q; = 0 and R = 0.0001. First, we perform
the simulation in the case of Qz,, = Q.,, and Fig.1 shows
the output and control input trajectory. It is shown that the
undershoot phenomenon is very large for expectation. Fig.2
shows output and control input in the case of Qz,,, = 15 and
Q., = 1 in order that undershoot phenomenon decrease at
the price of large rising time. Also, Fig.3 shows the output
and the control input in case of Qz,, = 1 and Q,, = 15,
which are taken to make the rising time short even though
the undershoot is large. Table.1 shows approximation values
of closed loop poles and zeros. From Table.1, we know that
the system zero s = 0.5 is not change.

4.2 System with One RHP Real Zero and Two RHP Com-
plez Zeros
Consider the system with one RHP real zero and two
RHP complex zeros as follows.

=28+ 1) {-(1+j)s +1}{-(1 —j)s+1}
(s+12(s— 2)(s+3)(s—4)
- —45° + bs —4s+1
8T — 28 —13s” + 145 +24°

G(s)=

(24)

Note that given system has poles at 8 = —3, —1, 2, 4 and
zero at 8 = 0.5, 0.5(1 £ j). Thus the system has a large
initial undershoot phenomenon because RHP zeros near the
imaginary axis more than poles and system with odd RHP
zeros. The controllable canonical form of the system is as
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follows :
0 1 0 0 0
_ 0 0 10 _|o
A= 0 0 o0 1| B= 0|’ (25)
-24 -14 13 2 1
C=[1 -4 6 —4], D=[0].

Thus augmented state space model has the coefficient ma-
trix as follows :

0 1 0 0 0 0 00
0 0 1 0 0 0 00
4| 0 0 0 1 0 0 00
*T1-24 -14 13 2 0 0 00|’
1 -4 6 -4 -1 -3 =30 (26)
-1 4-6 4 0 0 00
B.,=[0 00100 0 0],
B,=[0 000000 1],
Co=[1 —4 6 —4 0 0 0 0], D.=[0].

Let us take @Q; = 0 and R = 0.0001 like Section.4.1.
First, we investigate in the case of Qz,, = Q.,;. Fig.4 gives
output and control input in case of Qz,, = Q;, = 1. It
is shown that the undershoot phenomenon is very large for
expectation. Fig.5 shows the output and the control input
in case of Qz,, = 15 and Q., = 1, which says that the un-
dershoot phenomenon decreases at the price of large rising
time. Also, Fig.6 shows the output and the control input in
case of Q;,, = 1 and Q., = 15, which says that the rising
time becomes small even though the undershoot is large.
Table.2 shows approximation value of closed loop system
poles and zeros, and it says that the system zero s = 0.5,
0.5(1 =+ j) is not changed.

5. Conclusion

In this paper, we formulate a linear quadratic type prob-
lem to deal with the effects of the right half plane zeros in the

R T

(a) Step Response (b) Control Input
Figure 4: Q,,, =Q¢, =1
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i

(a) Step Response (b) Control Input
Figure 5: Q.. =15 and @,, =1
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(a) Step Response (b) Control Input
Figure 6: @, =1 and Q,, =15

Table 2: The Closed Loop Poles and Zeros

Close Loop Poles Closed Loop Zeros
17048718 801T;
Qay =1 -1.0038+ 0.4289j 0.8000::0.5000j
Qay =1 -0.6020+ 0.4996j -1.0000
-0.5956 -1.0000:£0.0000;
-0.4963 0.8000
-28.4246128.1451]
Qa, =18 -0.8842+ 0.4988j 0.5000+0.5000§
Qey =1 -0.5004% 0.5001; -1.00000.0000j
-0.5008 0.5000
-0.2421
~28.4167128.1837;
Qa2 =1 -1.0680+ 0.1991j 0.500010.5000
Qey =18 -0.5002% 0.4999j -0.9827+0.0262;
-0.8203 0.8000
-0.4999

nonminimum phase systems. It is shown that there exists
the trade-off relation between undershoot and rising time
performances in nonminimum phase systems by using the
new performance index with tracking error and new state.
And, the usefulness of the proposed method is shown by two
examples of the system with one RHP real zero and, with
one RHP real zero and two RHP complex zeros. We can
know that the RHP zero is not changed for feedback, and it
is possible to design a controller which adjusts the trade-off
relation between undershoot and rising time performance.

The global characterization of the effects for the RHP ze-
ros upon the step response of the system, both real and com-
plex, still remains as an open problem. Thus, it is difficult
to control systems with RHP zeros. The global character-
ization of undershoot phenomenon will require the further
research.
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