Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 1999.05a
- /
- Pages.203-207
- /
- 1999
Automated Generation Algorithm of the Penetration Scenarios using Association Mining Technique
연관 마이닝 기법을 이용한 침입 시나리오 자동생성 알고리즘
Abstract
In this paper we propose the automated generation algorithm of penetration scenario using association mining technique. Until now known intrusion detections are classified into anomaly detection and misuse detection. The former uses statistical method, features selection, neural network method in order to decide intrusion, the latter uses conditional probability, expert system, state transition analysis, pattern matching for deciding intrusion. In proposed many intrusion detection algorithms unknown penetrations are created and updated by security experts. Our algorithm automatically generates penetration scenarios applying association mining technique to state transition technique. Association mining technique discovers efficient and useful unknown information in existing data. In this paper the algorithm we propose can automatically generate penetration scenarios to have been produced by security experts and is easy to cope with intrusions when it is compared to existing intrusion algorithms. Also It has advantage that maintenance cost is not high.
본 논문에서는 연관 마이닝 기법을 이용한 침입 시나리오 자동생성 알고리즘을 제안한다. 현재 알려진 침입 탐지는 크게 비정상 탐지(Anomaly Detection)와 오용 탐지(Misuse Detection)로 분류되는데, 침입 판정을 위해 전자는 통계적 방법, 특징 추출, 신경망 기법 둥을 사용하며, 후자는 조건부 확률, 전문가 시스템, 상태 전이 분석, 패턴 매칭 둥을 사용한다. 기존에 제안된 침입 탐지 알고리즘들의 경우 알려지지 않은 침입은 보안 전문가에 의해 수동적으로 시나리오를 생성ㆍ갱신한다. 본 알고리즘은 기존의 데이터 내에 있는 알려지지 않은 유효하고 잠재적으로 유용한 정보를 발견하는데 사용되는 연관 마이닝 알고리즘을 상태전이 기법에 적용하여 침입 시나리오를 자동으로 생성한다. 본 논문에서 제안한 알고리즘은 보안 전문가에 의해 수동적으로 생성되던 침입 시나리오를 자동적으로 생성할 수 있으며, 기존 알고리즘에 비해서 새로운 침입에 대응하는 것이 용이하고 시스템 유지 보수비용이 적다는 이점이 있다.
Keywords