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Nonlinear Viscoelastic Constitutive Equation

of Solid Polymers: Irreversible Thermodynamic Theory
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1. Introduction

There has been a lot of efforts to develop a
constitutive equation for solid polymers which
can show yield, strain softening, rate
sensitivity, temperature effect and a curved
unloading path [1-6]. Before these efforts,
there were attempts to understand the
mechanism of the yield of solid polymers [7-
14].

We have developed a new nonlinear
viscoelastic constitutive equation of solid
polymers, which can predict the yield behavior,
describe rate- and temperature-sensitivity of
stress-strain  curves and  suggest new
mechanism of the yield. Since our theory is
based on the irreversible thermodynamics, we
have not assumed artificially simplified
molecular motions or structures such as
disclinination [10] and dislocation [11].

Qur theory also includes the previous theories

[2, 3] as a special case.

2. Introduction to Irreversible
Thermodynamics

We wuse a summation convention over

repeating index. It is assumed that the rate of
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where T'is the temperature, 7 ds 4, /dt is the

rate of entropy due to entropy flux from the
surrounding volume elements and T ds,, /dt
is the rate of entropy production due to
irreversibility of the system.

From the second law of thermodynamics
the rate of entropy production must be non-
negative.

ds;
T2 >0 2
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We assume Fickian approximation (Fourier

heat conduction law) for heat flux:
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From the definition of specific free energy
f(T,e[,,qg'-)=u—Ts 0]

where e, is the strain and gj are the

)

internal variables, which stands for the

measure of deviations from equilibrium.

Combining the above equations in suitable

ways, we have
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and
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aq"; dt

3. Evolution Equations of
Internal Variables

We assume isothermal conditions. We
propose following evolution equations for

internal variables:

n
dg;, = (ZZM €y — M ;qul'ZI)
(no summation over n) €))
where
n
~Z‘kl = an5f/5k1 + Zg‘suﬁ jt (8)
i = M1 5Ou A’;I;5ik5jl

Equation (8) states that material is assumed to

be isotropic and internal variable, microstate
strain tensors are symmetric. AE, stands for
activation energy, R is gas constant, and W, is
function of the deformation which can be
expressed as the invariants of strain. We call
them deformation work:

W, = Qje;en 9
where (2}, is positive definite 4th order
tensor.

Following Valanis [15], we assume that
the inequality of 2nd law of thermodynamics
is

of dq,, % 3 q,, qu!
b;

aq[’;— dt =]

amn

where by, = bl 5,,5k,+b2 046y is  the

viscosity tensor of 4th order. The

interpretation of the tensor b,,,d as a viscosity
proposes the following formula:

by bl
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(10)

where 5 and by are functions of the
temperature and the strain, eTé' is a material
constant which guarantee the existence of

zero-rate viscosity and

zd d (N
VB d dt

is the effective strain rate and m, is a

Q-
1]

material constant that stands for rate-

sensitivity of the viscosity.

4. Specific Free Energy
We expand the specific free energy as a
Taylor series about the reference temperature

as follows
1 1 N oon non n _n
=5 duesen +3 2 Bijudydu —Ciudieu
n=}

(12)
where
Ry =R6,;6, +R 2040
R=A4,B",C"

(13)

Since we expand the series about a reference
temperature, the moduli A4, Bj, and Cjy
are not dependent on the strain and the
microstate strain. They may be decreasing

functions of the temperature such as
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If a material is stable, the moduli 4, and

Bj, are positive definite:

20, R, 20 (R=4,B")
(14)

irreversible

The second law of

thermodynamics gives following formulas:

B; = b; (T’ emn )
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#2 = M2 + 3™ )0
Wy = 07+ Lidy = Mo(en e 3™ )20
by B_so
¥aM3
. (18)
by =B +1b =—2—2>0
YnMo

5. Constitutive Equation

Now we can calculate the stress tensor by

the integration of the evolution equation:

dq; S
Zt” =3y, +3m e, ~Myqp)
(19)

dp'/ ( X n n n)
—dT—}’n e +eé” Lyey —M; py
(no summation over »)
where

n __ n ] n n _ n
Py =45 =390, 9v =qu
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If we contrive a new variable which called

internal time z,,,

]

zn(t)s_[(z(;' +é" )exP(R_TAEVJdS (2N

0
We take initial condition as q,’,‘( )=0 (for all
n) and e (0) 0 for simplicity. Integrating

the evolution equations of the internal time

version, the stress is

L0
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where

=z

L
ZKI s KI = n C(;'
" 0 (24)

Ln
ZGI’ GI = 2,, C;’
n=1 M2

Ky =4y~

=

G; =4,

Equation (23) is identical to the formulas of
Knauss and Emri [2] if we take m, =0 (for

all n) and deformation work W, as a function

of stress invariant.

6. Yield Criteria and
Mechanism
For mathematical simplicity, we consider
only single mode, one-dimensional model and
such  as

constant  deformation  rate

e=¢£twhere £ is constant.
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With the help of the theoretical results of
Robertson[9], the experimental results of
Theodorou and co-workers [16] and computer
simulation of Jang and Jo [17], we propose the
criterion of the yield as the maximum point of
the rate of entropy production. This criterion

gives following equation:

& =Gy + — 1% )
Myge — Qe
where
éo +[€
¢Ee0 ll , G _(A——L—C]
£ M (26)
G]E“L—C
M

and tilde means the point of the maximum rate

of entropy production.

7. Conclusions
We  have

developed a nonlinear
viscoelastic constitutive equation that includes
the clock model of Knauss and Emri [2] as a
special case. Our theory is based on the
irreversible thermodynamics of the internal
variables and is not an extension of the linear
model by intuition.

We have started the theory from the
viewpoint of irreversible thermodynamics and

derived the yield equations only from the

continuum theory.
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