A Simplified Estimation of Stress Intensity Factor

on the Hertzian Contact
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I. Introduction

It was reported by Hornbogen that the wear rate is significantly affected by the
fracture toughness of the material{l]. The experiments for revealing fatigue process of
crack in rolling contact have carried out by Way[2]. After the works of Way, various
theoretical models dealing with fatigue failure behavior of the surface crack were
proposed. The propagation behavior of the surface crack of semi-infinite elastic body
under Hertzian contact was investigated and the method of predicting the fatigue life
of rolling contact component using the Paris’criteria of propagation life was proposed
by Keer et all3). In recent years, this problem was discussed by many investigators.

In the framework of the theory of elasticity, numerous analytical methods have
been developed to solve the crack problems. Most investigator have been simulated
the behavior of cracks for the problem of asperity contact using finite element
method. The other prevailing methods are the method of continuous distribution of
edge dislocations and weight function method. However, the previous methods have a

common disadvantage, which is that the complicated finite element calculation must be
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repeated and a large amount of numerical calculations are involved.

The main objective of this paper is to suggest a simplified method which provide
a more efficient methodology in the analysis of crack problems based on the linear
fracture mechanics to determine stress intensity factor. The simplified method will be
demonstrated at first and some known results will be studied to validate the accuracy
and efficiency of this method. The current analysis may facilitate further exploration

of the behavior of surface crack in semi-infinite elastic body under Hertzian contact.

II. Analytical model and method

2.1 Analytical model

Consider a Hertzian contact moving across the surface of a semi-infinite elastic
body containing a surface crack from right to left, as shown in Fig.l. The surface

traction at the asperity contact may expressed as:
P(X)=—Py\ 1= (X1/0)?% Pp0 .
QX)) =pP(X,)

where Py is the maximum normal

loading acting at the center of the

ol xx
Hertzian contact origin, gz is the 'Y Ka
coefficient of friction. ® s
Furthermore, it is also assumed " S S -
that the analytical model is under 7z ‘
the plane-strain state Fig.1 Analytical model and coordinate systems

2.2 Analytical method

The current analysis is based on the contact mechanics and the linear elastic
fracture mechanics(LEFM).

2.2.1 Linear elastic fracture mechanics background

The stress intensity factor depends on loading, crack size, crack shape and
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geometric boundaries, with the general form given by

K= AgoV na (1)
where 6 = remote or nominal stress applied to component, @ = crack length,

f(g) =correction factor depending on specimen and crack geometry

Stress intensity factors for a single loading mode can be added algebraically.
Consequently, stress intensity factors for complex loading conditions of the same
mode can be determined from the éuperposition of simpler results, such as those
readily obtainable from handbooks.

Correction factor A g) is a universal function for a given crack geometry and
composition. If the A g) is obtained from a single simple loading case, it can be used
to calculate stress intensity factor for any other complicated loading system of the
same cracked geometry. In this case, f(g)\/—?r:F constant.

In determining stress intensity factor, numerical methods (including finite element
methods) have been widely used. Determination methods for stress intensity factor
tend to be approximate. In general, values for Ag) in Eq.(1) tend to be between 1
and 1.4, with the value for many engineering situations being between 1 and 1.2.
Errors in K-factor may be small compared to uncertainties in a fatigue analysis, such

as material properties, load levels, load history and service environment.
The compliance function f; (g) for some case is presented as follow[4]:

Edge crack loaded in tension

f1(2)=112-0.231 ‘3+10.55 (_b> -21.72 (—b) +30.39 (—b) 2)
Edge crack loaded in bending
= - a ay _ _a a
fi(@=1122-140 44733 (-F) -1308 ( 2) 140 (4) -

For small cracks( @a/b<1), the higher order terms in the above equations can be

ignored and they are converted into

fi1(g)=1.12
to express the stress in tensity factor as
K ;=1.120V na (4)
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Similar expressions for small cracks( a/b<1)can be used for ModesI and ModesIl

For MordII the stress intensity factor is expressed by

Ky=1.00V 7a , fu(®)=1.0 )

2.2.2 An useful formulation of contact mechanics

By theory of contact mechanics the stress field in the semi-infinite solid due to

the Hertzian distributed normal and tangential contact load are obtained as:

Ox= —jz_—o[(Z x:=2c¢?-3 22)¢+27r—9cc+2( c?— x%— 22)%2]

2 2 2 _
__Do_z( c+2x°+2z2 J— 2 3x¢)

d ¢ 6)
0= _% 22¢——_Z(C¢ x¢)
- 2 2y 2 2 by o
Opr= [( c?+2x%+2 222 ¢ 2r —3xz¢]— z Z ¢
* 1/2
in which ¢= 1= Chy/ k)

h Cho/ k1) "2 key ) k) V2 Chey+ ley— 4 D) ey}

pi.d 1+ (kykey) 2
ki (kylby) V{2 keyyby) Y24 (B + By — AP By }”2

where k= (c+x)?+ z? ky= (c—2)*+ z°

2.3 Analytical procedure

Based on the previous results, the behavior of the surface crack in semi-infinite
elastic body due to Hertzian contact can be studied.

We extend the concept as shown in Eq.(1) for dynamic stress fields in the
model employed due to moving contact. Consider the non-crack semi-infinite elastic
body. It is assumed that the applied stresses distribution is impartial in the small

range which contained crack. The applied stress represented as that at point of crack

tip.
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be obtained from (6) as follows:
0= 0,(-s, a) T= Ogl-s, a) (7)
where s and @ represent as the distance and crack length
Substituting (7) into (1), and for correction factor using the approximate value

f1(&=1.12 and f;(g =1.0, the dimensionless stress intensity factor K ;and

K n can be written respectively as

K, /P,V7a = 11512 5
0

(8)

KH/PO\/}Z:IF-,OT
0

The variation of dimensionless K-factor is significantly attributed to the varation
of applied stress ¢ or 7 due to Hertzian contact.

Since only positive K;values are physically significant, all negative K; were

nullified.

. Results and discussion

The simulation were performed on computer using tool program SIGMPLOT. The
half-width of contact patch was set equal to 4. The friction coefficients was chosen
as 002, 01 and 0.7 which simulated the cases of fluid lubrication, boundary

lubrication and unlubricated respectively. To obtain generalized solutions, all the
results obtained were normalized by dividing K by P, ‘/—7—1'(—1, and the distance by
half-width of contact patch c.

Figs.3 and 4 show the variation of K with Hertzian contact position and contact
friction for @/c=0.02 and a/c=0.2. For the case of =01, 0.7, a/c=0.02 and ¢=07, a
/c=0.2 , the maxima occurs when the midpoint of the contact is located at the crack.
However, for other cases, K exhibits a cyclic variation, with maxima and minima

occurring when the beginning edge and trailing edge of the contact reaches a position



; -_b‘=(i02 002
e N /3=0.02 — =0l /"\\ alc=0.2

KnfPojra

Fig.3 Ku/Po 7@ versus s/c for a/c=0.02 and p=0.02,0.1,0.7 Fig.4 Ki/Py 78 versus s/c for a/c=0.2 and p=0.02,0.1,07

over the crack. This fluctuation of Kis considered to be the primary reason for
fatigue crack growth. The greater Kvalues is obtained for the case of unlubricated
(#=0.7). The Kycurves shown in Figs.3 and 4 reveal that K pvalues increase with
contact friction and crack length. Fig.5 shows the variation of K ; with Hertzian
contact position and contact friction for £=0.7 and a/c=0.02, 0.2, 1. The maximum of
Koccurs when the trailing edge of the contact reaches nearly a position over the
crack. Kincreases rapidly to the maximum value and subsequently decreases
gradually to zero as the contact moves further to left. The figure also implies that
the K ;magnitudes were rapidly reduced with increasing crack length. The K values

corresponding to the case of fluid lubrication and boundary lubrication are either zero

or very small at all contact position. The

variation of Kis sensitive with respect to

u=07 — afc=0.0s
— afc=.2
— - a/c=1

friction and crack length.

The results presented here compared with %M
. . 2 s
some known Kim’'s results[5,6](see appendix) Oﬂ_ __\4
and it is found that are in good agreement. as

IV. Conclusion

Fig.5 Kv/Po 7@ versus s/c for n=0.7 and a/c=0.02, 0.2, 1

Behavior of the surface crack in the
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semi-infinite elastic body due to Hertzian contact was studied using a simplified
method. We make a comparison with Kim[56]and the results are in excellent
agreement. It is proved that the simplified method is more convenient and efficient
than other methods . The more significant results of this study are as follows:

1. For unlubricated condition, cracks may initiate at the surface because of the

presence of stress intensity factor K |caused by friction forces.

2. The magnitudes of the stress intensity factors increase with the increasing
friction coefficients.

3. When the crack propagate to a certain depth from the surface, further crack
growth is attributed to Kj.

4. The driving force for crack growth is K for unlubricated condition and Ky for

both fluid and boundary lubricated condition.
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appendix

Some Kim's results got from reference[6]
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