요약문

본 논문에서는 8VSB 수신기의 다중경로신호에 따른 성능이 나뉜 것에 대한 원인 분석과 나아가 개선책을 제시하기 위해 다중경로 신호가 디지털 지상파 TV의 수신성능에 미치는 영향에 대해 수신자의 STR(Symbol Timing Recovery)과 동기화를 중심으로 분석한다. 전파 동기화의 성능 분석을 위해 에코의 지연시간이 7.5 μsec의 시간에 대해 성능 전반에서 전산 모의 실험을 하였다. 이동전송모의 수집차에 따른 TTV(Threshold of Visibility) SNR(Signal to Noise)를 구해보니 호수의 실험실에서의 결과와는 달리 0 dB에서의 SNR이 26 dB 정도이면 동기화는 가능함으로써 동기화는 1.5 μsec로 수행된다. 동적 제어모드 독립적 제어의 신호를 주기적으로 주어진 경우 Sync. +1, +1, -1, +1을 사용할 때 짧은 시간에 에코가 긴 시간에 에코에 대해 S 커버를 보면 짧은 시간에 에코에서의 실험값이 지연된 간산 모의 실험을 하여 에코의 영향을 분석하고 FSE(Fractionally Spaced Equalizer) 동기화 사용에 따른 장점을 분석한다.

Ⅰ. 서론

우리나라의 디지털 자가와 TV 전환 계획은 96년 초에 정부가 지정한 방송 디지털화 계획을 발표하였으며, 97년 11월에 미국 방송을 시작하여 98년 8월에 규격을 확정 지었으며 2000년에 시범 방송을 거쳐 2001년에 본 방송을 개시한다. 또 2010년까지는 아날로그와 DTV(Digital Television)를 동시 방송을 실시하며, 2010년에 기존의 아날로그 방송을 중단할 계획을 가지고 계속 추진중이다. 국내 지상파 디지털 방송 표준으로 결정된 ATSC(Advanced Television Systems Committee) 방식이 조 장기 제품으로 테스트한 결과 현재의 아날로그 방식보다 도시

Ⅱ. 8-VSB 수신기의 STR과 채널 동기화

1. 채널 동기화

그림 1은 8VSB 수신기에서 사용하는 결정론전 등기화기 (DFE: Decision Feedback Equalizer)를 나타낸다. 결정론전 동기화기 두 부분으로 되어 있는데, 10.762 MHz 싱글 간격으로 LMS(Least Mean Squares) 알고리즘에 의해 재수신된 신호 필드 동기화, 펄트 래프 계수 생성은 LMS(Least Mean Square) 알고리즘을 사용한다. 재수신 필터의 역설은 이전 값으로부터 추정한 결정값에서 ISI를 제거하는 것이다. 동기화의 출력 \(\hat{I}_k \)는 다음 식(1)과 같다.

\[
\hat{I}_k = \sum_{j=-1}^{0} c_j I_{k-j} + \sum_{j=-1}^{k} c_j \hat{I}_{k-j}
\]

여기서 \(\hat{I}_k \)는 \(k \) 번째 정와 실험의 중간값이고 \(c_i \)는 동화
기 텔의 계수이며 \(\tilde{e}_t \)는 결정값을 나타낸다. 동화기에는 ATSC에서 사용하는 것과 같이 전산형 64 텔과 귀환형에 192 개의 텔을 사용한다. LMS 알고리즘에 의한 계수 생성은 식(2)와 같다.

\[
C_{st} = C + \mu e_t P^t
\]

여기서 \(C \)와 \(V \)는 전산형에서 64 개 원소와 귀환형에서는 192 개의 원소를 가지는 벡터이며 \(k \)는 루프 반복 횟수를 나타낸다. \(e_t \)는 에러 신호를 나타내고 식 (3)과 같다.

\[
e_t = \tilde{e}_t - \hat{e}_t
\]

그림 1 8-VSB 수신단 채널 동화기 품목 구조

2. 삼불 타이밍 복원

데이터 세그먼트 동기 검출은 필터 맵 계수가 \(+1, -1, +1, -1\) 인 상관 필터(Correlation filter)를 사용하여 필터의 출력이 균일하게 나는지 유무를 검증하는 것이 데이터 세그먼트 동기의 주요한 작업이다. 삼불 타이밍 동기는 필터 맵 계수가 \(+1, -1, -1\) 인 삼불 타이밍 검출 필터를 사용하여 구현한다. 삼불의 a)는 데이터 세그먼트 동기 방법은 5 V, -5 V, 5 V의 범위의 신호 구간을 차지하고 있다. 그림 2의 b)는 삼불 타이밍 검출 필터 +1, -1, -1를 사용했을 때 디지털로 변환한 삼불의 움직임을 가면서 삼불 타이밍 검출 필터의 출력을 보이는데 2번째에서 양의 값, 3번째에서 영, 4번째에서 음의 값을 나타내는 것을 알 수 있다. 실제로는 그림 2가 a)의

\[
\text{Overlap Cosine 필터의 영역 필터가 되어 있기 때문에 그림 2b)가 c)처럼 나타난다. 그림 2a)는 4의 위치에서 영점교차가 되는 전형적인 PLL의 S 크로스를 나타내며 4 번 위치로 수렴이 되도록 PLL을 작동시킨다.}

III. 전산모의 실험

8-VSB 수신기의 구현과 성능을 평가하기 위해 개발된 SPW(Signal Processing Worksystem) 둘을 사용하여 다중경로가 존재할 때 에코의 크기에 따른 임계 SN을 구하는 모의 실험을 하였다.

1. 동화기

먼저 캐리어 동기와 삼불 타이밍 동기가 정상적으로 작동하고 시스템 안정성에 부정적 영향 전산모의 실험을 하였다. 동화기의 스텝 크기(step size)는 0.0001이며 각각의 에코 레벨에 대해 10,000 실험 이내에서 수렴하였으며, 수렴 후의 시스템 TOV SN을 구하였다. SN을 구하는데 있어서 신호 전력은 직접 신호와 에코 신호로 합한 것으로 계산되었다.

\[
\text{그림 3 8-VSB 수신기 전산 모의 실험 구조도}
\]

그림 3은 전산모의 실험을 위한 8-VSB 수신기 시스템의 물리도이며, 그림 4는 호주에서 실시된 실험실 측정의 동화기 에코 레벨에 따른 임계 CN 의 관계를 나타내는데 8-VSB의 경우 에코레벨이 -3dB 이상이면 수렴이 불가능한 것으로 보인다. 그림 5는 8-VSB 수신기 시스템에서 7.5μsec에 대한 동화기 성능을 테스트한 결과이다. 결과에서 보듯이 동화기의 성능만큼을 살펴본다면 0 dB 에코에도 수렴하고 TOV SN

240
이 26 dB 임을 알 수 있다. 호주의 측정 결과와 차이가 나타나는 이유는 본 논문은 동화기만을 실험한 것이고 호주에서는 수신기 전체의 성능을 테스트한 것이기 때문이다. 위 결과를 볼 때 원리적으로 예측보다 큰 경우 발생 가능성이 있는 것은 아니므로 수신기 성능을 향상시키기 위해 큰 에코 레벨에서도 태양의 예측이 없으면 예측이 이루어질 수 있다는 것을 알 수 있다.

![그림 4 호주에서 실험한 에코레벨에 따른 CN 임계값](image)

그림 4 호주에서 실험한 에코레벨에 따른 CN 임계값

![그림 57.5 μsec 에코에 대한 동화기 성능](image)

그림 57.5μsec 에코에 대한 동화기 성능

2. 심볼 태양성 복원

그림 6과 그림 7은 STR의 대역을 끌고 출력단의 에러 값을 평균해서 구한 S 커브이다. 그림 6은 직접 신호 실험 대비 에코 레벨(ED)이 -3 dB일 때 각각의 저전시간에 대한 태양성 위상 에러를 나타낸 것이고 이때 실험은 동기 복원은 세그먼트 싱크 박스써(+1, +1, -1, -1) 통과 후 태양성 에러를 검출하여 평균을 하여 얻은 값이 0가 되도록 맞추어진다. 혹은 저전 에코와 저전 에코에 대해 S 커브를 보면 12 심볼 지연 에코에 대해서는 태양성이 40% 정도 영향을 줬으며 저전이 줄어들면 다시 감소하여 12 심볼 지연 에코에서는 +30% 정도 어긋나고 저전 시간이 줄어들면 몇차에 따라 태양성이 같이 된다. 그래서 실제 수신에서는 그량의 예측이 많고 어긋나는 태양성 지연을 알 수 있는 경우 수신기 성능에서도 동화 가능할 수 있다.

그림 7은 에코 저전 시간이 06 심볼 만큼 있을 경우에 에코 레벨(ED)에 따른 S 커브를 나타낸다. 그림 7에서 태양성 예측은 에코의 크기에 비례하여 증가 하는 것을 알 수 있다.

![그림 6 에코레벨(ED)이 -3 dB인 경우의 S 커브](image)

그림 6 에코레벨(ED)이 -3 dB인 경우의 S 커브

![그림 7 에코레벨(ED)에 따른 S 커브 변화(0.6T)](image)

그림 7 에코레벨(ED)에 따른 S 커브 변화(0.6T)

3. 심볼 태양성 동화기 동화기 연동한 전산 모의 실현

밝은 저전 에코에 의해 태양성 에러의 영향을 본격 테스트 하기 위해 12 심볼 저전 시간을 갖는 에코에 대해 각각의 레벨에 따른 TOV SNR을 구해 보았다. 그림 8에서 알 수 있듯이 기존의 M4들은 동화기는 에코 레벨이 -5 dB 이상이면 아무런 SNR을 줄이기까지 TOV SER(Symbol Error Rate)를 만족 할 수 없다. 이에 해결 방안으로 본 논문에서는 Feedforward 방식에서 FSE(Fractionally Spaced Equalizer)를 사용하는 방법을 제안한다. 그림 1의 재일동화기의 전산 페터 밑을 두 배로 늘려서 T2 시간 간격을 갖는 FSE(Fractionally Spaced Equalizer)를 사용하고 Feed-back 부분은 촉감은 DFE를 사용한다. 심볼 간격을 갖는 경우 재일동화기의 임계를 추구함으로서 보통 캐리어의 일부가 약 1/4와 같이 나타날 수 있다.

\[Y_r(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(f - \frac{n}{T}) e^{-j2\pi f T} \]

식(4)

그림 9는 심볼 간격으로, 총합한 동화기 임계를 추구함으로서 보통의 부분의 위상
이 서로 달라서 저기 성분에서 서로 상쇄되는 현상이 일어나 나이키스트 조건을 만족하지 못해 ISI(Inter Symbol Interference)가 생긴다. 그러나 FSE를 사용하면 임력은 보통 T/2로 생물하기 때문에 스펙트럼 오버랩에 의한 aliasing이 없어 동화기에서 타이밍 에러에 의한 저연을 보상 할 수 있다. 그림 8에서 알 수 있듯이 FSE는 12 싱글 지연 에코에 대해 에코레벨이 큰 경우에는 결정 재환 동화기 보다 현저하게 우수한 성능을 보여 주고 있다.

![그림 8 에코레벨에 따른 시스템 TOV SN](image)

그림 8 에코레벨에 따른 시스템 TOV SN

![그림 9 싱글 간격 동화기의 입력 스펙트럼](image)

그림 9 싱글 간격 동화기의 입력 스펙트럼

그림 10은 12 싱글 지연을 갖는 에코의 크기에 따른 타이밍 위상 에러를 나타내는데 DFE는 에코 태래비 -7dB 이상 이면 타이밍에러가 25% 이상 되어 채널 동화기가 제대로 동작하지 않는다.

![그림 10 에코레벨에 따른 Timing Phase error(%)](image)

그림 10 에코레벨에 따른 Timing Phase error(%)

IV. 결론

본 논문에서는 8-VSB 디지털 지상과 TV의 수신성을 저하시키는 요인이 되고 있는 다중경로에 의한 수신 성능을 분석하기 위해 채널 동화기와 STR 중심으로 전산 모의 실험 하였다. 타이밍이 완벽하게 맞았다고 가정하고 동화기를 살펴 보며 시험 SN이 26dB 정도면 TOV를 보완하였다. 그리고 STR과 연동하여 모의 실험을 할 경우 에코에 의한 타이밍 위상 에러를 살펴 보기 위해 8 주파선 을 구해 보았다. 한 싱글 내외의 지연시간을 갖는 에코에서 타이밍이 가장 많이 이상났으며 간 지연 에코는 문제가 없었다. 기존의 DFE를 사용할 경우 한 싱글 내외의 짧은 지연 에코는 실제 수신에서 크게 문제가 될 수 있음을 알 수 있다. 12 싱글 지연 시간을 갖는 에코레벨에 대해 전산 모의 실험한 결과 기존의 결정 재환 동화기를 이용할 경우 -7dB 이상에서는 수신 이 불가능함을 알 수 있다. 이를 극복하기 위해 본 논문에서는 Feedforward 부분은 FSE로 사용하는 DFE 사용을 제안하고 전산 모의 실험 결과 에코레벨 -1dB 가지 극복 할 수 있음을 확인하였다. FSE는 태래비가 늘어나서 하드웨어가 복잡해지는 단점이 있지만 타이밍 위상 에러를 극복하는데 탁월한 성능을 보이며 때문에 짧은 지연 에코가 많이 있는 실제 수신에서 유용한 것이다.

참고문헌

242