국악 공연장의 음향 지표에 관한 연구

A Study of Optimal Acoustic Parameters for Korean Traditional Music

김범수, 박정수, 최철민, 성영모
서울대학교 전기공학부

Beom Soo Kim, Park Kyoungsoo, Chulmin Choi, Koeng-Mo Sung
School of Electrical Engineering, Seoul National University

E-Mail : rhcp@acoustics.snu.ac.kr

요약
서양음악의 음향학적인 측면에서의 연구는 오랜 기간 동안 진행되어 왔다. 이를 통해 콘서트홀의 음향학적 특성을 평가할 수 있는 객관적 지표들을 제시할 수 있었다. 하지만 국악에 있어서는 공연장에 대한 음향학적인 지표가 공식화된 것이 없고, 개발자 지표를 찾기 위한 충분한 국악전용 공연장의 수가 부족하다. 따라서 본 논문에서는 국립국악원 예약장의 모델을 기초로 한 컴퓨터 모의실험을 통해서 얻어진 국악공연장을 비교양으로 RT, Warmth, IACC, ITDG 등의 4가지 지표를 가지고 각기 다른 지표를 제작하여 정취실험을 실시하였다. 그 결과 서양음악과는 다른 경향의 RT, Warmth 선호도를 추출할 수 있었다.

0. 개요
서양음악에 적합한 실내음향학적 특성은 이미 많은 연구가 진행되어 왔으며, 좋은 공연장이 가져야 할 여러 가지 주관적, 객관적 지표를 제시할 수 있는 수준에 이르고 있다. 이는 서양음악의 경우 이미 오랫동안 대중적인 공연장이 있어 왔고, 기존의 공연장의 음향학적인 특성에 맞는 음악의 작곡이 행해지는 등, '공연장에서의 음악'이라고 하는 개념이 일찍이 받아들여 왔기 때문이다. 그러나, 우리의 전통 국악은 현대에 이르러서야 수많은 사람만 함께 감상할 수 있는 큰 규모의 대중적인 공연장에서의 연주가 시작되었기 때문에, 국악공연을 위해 건설된 공연장이 적고, 또한 그 특성 이 서양음악의 기준에 맞추어 있어 전통국악의 공연에 적합하다고 할 수 있는 근거가 없다. 서울대학교 음향공학연구실에서는 국립국악원으로부터 의뢰를 받아 국립국악원 예약장의 음향특성의 측정을 수행한 바 있다. 그런데 앞서 언급한 것과 같이 국악 연주자와 음악에 호감을 주관적인 경험으로 좋은 공연장이라고 추천하는 대중과 공연장이 현재는 없고, 따라서 좋은 공연장에서 추출된 객관적 지표를 기준으로 비교할 수 없기 때문에 이 측정된 결과를 놓고 공연장의 음향특성을 평가하기에는 어려움이 있다. 이러한 국악에 적합한 공연장의 음향 특성의 표준의 설정은 공연장의 설계 및 평가를 위해서만이 아니라 국악 음반의 제작에도 중요하다. 즉, 스튜디오에서 녹음된 경우에 인공적으로 정각하게 되는 재현한 경우나 반사음의 설정 등에 응용하여 더 나은 결과를 기대할 수 있다.

본 논문에서는 이러한 표준의 설정을 위하여 모의 실험을 통해 여러 가지 음향학적 특성을 가지는 가상의 공연장의 측정을 도모하고 이를 녹음한 국악곡의 무향 음원과 콘텐츠하여 정취실험을 수행하였다. 이 정취 실험은 국악 연주자, 국악 이론학자 및 음향학 전공자들 대상으로 실시하였으며 선호도에 따른 각 지표들의 적절치(optimal value)를 찾아 그 결과를 바탕으로 국악공연장에 적합한 몇 가지 음향특성을 제시하였다.
1. 측정된 예약당의 음향특성
1.1 측정방법
측정은 무대중앙에 위치한 12면체의 무지향성 스피커를 통하여 5초 길이의 MLS(Maximum Length Sequence)신호를 격식에 위치한 타이머 헤드로 녹음하여 분석하는 방식을 취하였다.

녹음위치는 예약당의 전체 모양이 거의 대칭적 구조를 이루고 있으므로 측정은 격식에서 무대를 바라본 때 좌측의 절반에 대하여 측정하였다. 다음의 그림 1에 측정을 위하여 녹음된 위치를 요약하였다.

![그림 1 측정위치](image)

1.2 측정결과
예약당은 좌석 774석, 층적 11600m² 규모의 슈박스(Shoebox)에 가까운 모양을 하고 있다. 측정된 총충돌은 다음의 그림2와 같은 모양을 하고 있다. 예약당에서의 총충돌은 잘 성장한 턴나무(Tannenbaum)의 모양을 갖추고 있다.

1.2.1 초기지연시간(initial-time-delay gap)
 초기지연시간은 콘서트홀의 주관적 평가지표인 근접감과 밀접한 관계를 갖는 중요한 실내 음향학의 객관적 지표이다. 예약당의 초기지연시간은 실제음향학적 기준으로 약 9내지 십수 ms 이내의 매우 좋은 값을 갖는다.

<table>
<thead>
<tr>
<th>좌석</th>
<th>ITDG [msec]</th>
<th>IACC</th>
<th>C\textsubscript{80} [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1층</td>
<td>11.7</td>
<td>0.38</td>
<td>2.0</td>
</tr>
<tr>
<td>2층</td>
<td>9.2</td>
<td>0.38</td>
<td>5.0</td>
</tr>
<tr>
<td>3층</td>
<td>10.0</td>
<td>0.24</td>
<td>3.0</td>
</tr>
</tbody>
</table>

1.2.2 IACC (Interaural Cross-correlation Coefficient)
콘서트홀의 공간감과 밀접한 관련을 갖는 지표로서 두 귀에 들어오는 신호의 상관관계를 나타내는 IACC가 있다. IACC는 500Hz, 1kHz, 2kHz 부분의 IACC를 평균하여 구하는 것이 일반적이다. 예약당의 구조는 국내외에 다름 콘서트홀과 달리 국내에서 거의 보기가 드문 슈박스(Shoebox) 형태의 구조를 하고 있다. 따라서, 매우 좋은 공간감을 얻을 수 있는 구조로 되어 있다.

1.2.3 명료도(Clarity) C\textsubscript{80}
음악을 듣는 것을 목적으로 하는 콘서트홀에서 음악의 한 음, 한 음을 투명하게 전달하는 정도를 객관적으로 나타내는 지표로 명료도 C\textsubscript{80}을 들 수 있다. 대체로 거의 모든 좌석에서 0dB를 상회하고 있으므로 예약당의 명료도는 상당히 좋은 편이라 말할 수 있다.

1.2.4 선명시간 및 warmth
선명시간은 일반적으로 500Hz와 1kHz의 선명시간을 평균하여 보거나, 옥타브렌덤 볼 중심 주파수의 선명시간을 각각 살펴보는 것이 일반적이다. 전 대역에 걸친 선명시간은 모든 좌석에 걸쳐 전반적으로 짧은 약 1초의 선명시간을
2. 가상공간간의 총격음달
가상 공간의 실험을 위해서 CATT Acoustics 프로그램을 이용하여 예약도 모형을 기준으로 그림 3과 같은 공간장을 모델링하였다. 이러한 가상공간에서 추후 실험결과의 신뢰성을 높이기 위해서는, 만들어진 가상공간이 과연 타당한 것인가에 대한 검증이 필요하다. 앞에서 측정한 결과는 예약도의 실제 공간상에서의 음향특성을 나타내므로, 이 결과를 기준으로하여 비교함으로써 가상공간의 타당성을 가중할 수 있었다. 설계음향학에서 가장 중요한 지표라 할 수 있는 전향시간을 비교하여 오타브렌드 중심주파수별 값이 같은 결과를 가지고 있었고, 다른 주요한 지표들은 IACC, ITDG 등도 거의 같거나 비슷한 경향으로 나타났다.

이렇게 해서 만들어진 가상공간의 원형을 바탕으로, 백분의 흡음계수를 조절하여 다양한 전향시간을 얻을 수 있었고, 오타브렌드 중심주파수별 전향시간을 조절하여 다양한 warmth 를 얻었다. 전향시간은 종목대역인 500Hz와 1kHz에서의 값을 평균하여 표 3의 5가지의 경우를 추출하였고, warmth는 종목대역과 종목대역의 전향시간 비에 따라 warm, flat, cool 등의 3가지로 나누어 추출하였다. ITDG나 IACC 실험을 위해서는 같은 모델 내에서 다양한 위치에서의 총격음달을 이용하였다. 전향시간이나 warmth는 모델 내에서의 반반하게 나타나므로 ITDG, IACC값을 가변시간 결과를 얻을 수 있다. 이렇게 얻어진 가상공간의 다양한 총격음달 시료를 표 3에 정리하였다.

3. 주관적 평가방법
위의 표 3에서와 같이 추출된 총격음달 시료를 가지고 무항목응답 응원과 콘볼루션시켜, 17개의 가정화(auralization) 데이터를 얻을 수 있었다. 무항목응답 응원은 '계면가락 도돌이' 12조 샘플을 사용하였다. 이 가정화 데이터를 각 지표에 대해 다른 지표들과 간에 지어 58방의 시료방을 제작하여 청취평가를 실시하였다.

4. 청취실험의 결과분석
청취실험은 국악공연을 실제로 하고 있는 연주자 그룹 15명과, 국악을 연주하고 있는 피연주자 그룹 11명의 두 가지의 경우를 각각 살펴보았다. 각 지표에 따른 선호도는 그림 4에서 그림 7에 나타내었다.

전향시간은 청취실점 결과 연주자와 비연주자 모두 1.0초 내외를 선호하는 것으로 나타났다. 이는 서양음악에서 선호되는 값보다 높은 칼린 실제 예약도의 전향시간보다도 약간 낮은 수치였다. 서양의 실내음향학에서 선호하는 것으로 알려진 2.0 조 정도의 전향시간은 적절하지 못한 것으로 나타났다.

Warmth에 대한 결과는 연주자와 비연주자 간에 다른 경향으로 나타났는데, 비연주자의 경우는 Warmth의 차이를 느끼지 못하지 못하던 것으로 나타났다. 그러나 연주자들의 경우에서는 자음부의 전향시간이 적은 cool한 소리로
선호하는 것으로 나타났다. 이는 중음부에 비해 저음부의 산향시간이 약간 길어야 좋은 소리라고 평가하는 서양음악의 기준과 대치되는 결과이다.

IACC에 대한 결과는 전반적으로 높은 수치를 선호하는 경향이 나타났다. 연주자 그룹은 서양 음악에서도 적합한 수치로 알려진 0.37 시료에 높은 선호를 나타내었다. 그러나 0.26을 제외한 비교적 monorال한 시료들에 연주자와 비연주자 그룹 모두 선호를 나타냈다는 사실은 주지할 만한 결과이다.

ITDG에 대한 결과는 warmth에서와 유사하게, 연주자 그룹만이 분명한 선호도를 나타내었고 비연주자 그룹은 특정한 선호를 보이지 않았다. 그 경험을 파악해 보면 대체적으로 14msec 정도의 ITDG 값을 선호하여, 비교적 높은 친근감이 느껴졌을 때 피실험자의 선호도가 높은 것을 알 수 있다.

5. 결론 및 향후과제
이상의 연구에서 국립국악원 예악단의 모델로 한 모의실험을 통해서 얻어진 가상 국악공연장의 총작해답을 바탕으로 다양한 RT, Warmth, IACC, ITDG를 가지고는 청취선실을 제작하여 청취실험을 실시하였으며 그 결과는 다음과 같다.

1) 산향시간은 1.0초 시료에 높은 선호도를 나타내었다.
2) Warmth는 부족한 저음을 가진 시료에 높은 선호도를 나타내었다.
3) IACC는 비교적 monor알한 경향에, 그리고 ITDG는 비교적 작은 값에 선호도를 가졌다.

위 1), 2)의 결과는 서양음악에서 이야기하는 실내음향학적 적절치와 상반되는 결과가 나타났다. 주어에 더욱 다양한 피실험자를 확보하여 보완된 청취실험을 실시한다면, IACC와 ITDG에서도 좀 더 유리한 경향을 찾을 수 있을 것이다. 또한 이러한 실내음향 특성은 음악의 장르나 악기의 편성에 따라서도 달라질 수 있는 것이므로 다양한 음악과의 연구가 필요하다.

참고문헌