Stochastic Comparisons of Markovian Retrial Queues

신 양 우* * 창원대학교 통계학과

Abstract

We consider a Markovian retrial queueing model with service facility. Cusomers arrive from outside according to a Poisson process with rate λ . An arriving customer who finds k customers in the service facility enters the facility with probability p_k or joins the orbit with probability $1-p_k$ and retries to get service after exponential time. If returning customer from orbit finds k customers in the service facility, then it enters the facility with probability u_k or joins the orbit again with probability $v_k = 1 - u_k$ and retries its service after exponential time. Let θ_k be the total retrial rate when k customers are in the orbit. When there are n customers at the service facility, we assume that, in the absence of arrivals, the time until the next service completion is exponential with rate μ_n .

We are interested in the bivariate process X(t) = (C(t), N(t)) called the *CN-process*, where C(t) and N(t) represent the numbers of customers in the service facility and the orbit, respectively, at time t. Obviously, the bivariate process $\{X(t), t \ge 0\}$ is a Markov chain with the lattice set $E = Z^+ \times Z^+$ where $Z^+ = \{0, 1, 2, \cdots\}$, as the state space.

In this paper, instead of studying a performance measure in a quantitative fashion, we attempt to investigate a relationship between the sample paths of two *CN-processes* from the relationship between parameters by constructing equivalent processes on a common probability space.

Define a relation < on E by (i,j)<(k,l) if and only if $j\le l$ and $i+j\le k+l$, then it is immediate that < is a partial order on E. If two stochastic processes Y and X are defined on the same probability space then X is almost surely smaller than Y with respect to <, written $X<_{as}Y$

if P(X(t) < Y(t) for all $t \ge 0) = 1$. Note that if X < as Y and Y and X have weak limits \hat{X} and \hat{Y} , respectively, then $\hat{X} < \hat{Y}$ in distribution.

Theorem 1. Let $X^{(i)} = \{X^{(i)}(t), t \ge 0\}$, i = 1, 2 be the CN processes described in the previous section with arrival rates $\lambda^{(i)}$, service rates $\mu_n^{(i)}$ with $\mu_0^{(i)} = 0$, retrial rates $\theta_n^{(i)}$ with $\theta_0^{(i)} = 0$

and the probabilities $p_n^{(i)}$ and $u_n^{(i)}$ of entering the service facility of customers from outside and from the orbit, respectively. Suppose that $X^{(i)}$, i=1,2 are regular and

(i)
$$X_{(1)}^{(1)}(0) = (i,j) < X^{(2)}(0) = (i',j')$$

(i) $X^{(1)}(0) = (i, j) < X^{(2)}(0) = (i', j')$ (ii) $\lambda^{(1)} \le \lambda^{(2)}$ (iii) $\mu_n^{(1)} \ge \mu_n^{(2)}$ and $\mu_n^{(i)} \le \mu_{n+1}^{(i)}$, $i = 1, 2, n = 0, 1, 2, \cdots$, (iv) $\theta_n^{(1)} \ge \theta_n^{(2)}$ $n \ge 0$, (v) $p_n^{(1)} \ge p_n^{(2)}$ and $p_n^{(i)} \ge p_{n+1}^{(i)}$, $i = 1, 2, n = 0, 1, 2, \cdots$, (vi) $u_n^{(1)} \ge u_n^{(2)}$ and $u_n^{(i)} \ge u_{n+1}^{(i)}$, $i = 1, 2, n = 0, 1, 2, \cdots$.

Then there are CN processes $\hat{X}^{(i)}$, i=1,2 which are equivalent to $X^{(i)}$, i=1,2, respectively, on a common probability space such that

$$\hat{X}^{(1)} < {}_{as} \hat{X}^{(2)}$$
.

Corollary 1. Let $\Sigma(c, K, M)$ be the retrial queue with parameters $\mu_n = \min(c, n)\mu$, $\theta_n = \min(M, n)\theta$ and $p_n = u_n = 1$ for $n \le K - 1$ and $p_n = u_n = 0$ for $n \ge K$. Let $\lambda^{(k)}$, $\mu_n^{(k)}$ and $\theta_n^{(k)}$ be the corresponding parameters of $\Sigma(c_k, K_k, M_k)$, k=1,2 satisfying $\lambda^{(1)} \leq \lambda^{(2)}$, $\mu^{(1)} \geq \mu^{(2)}$ and $\theta^{(1)} \ge \theta^{(2)}$. Then for $c_1 \ge c_2$, $K_1 \ge K_2$ and $M_1 \ge M_2$ and the initial values (i_k, j_k) of the systems $\Sigma(c_k, K_k, M_k)$, k=1,2, satisfying $(i_1, j_1) < (i_2, j_2)$, we have

$$\Sigma(c_1, K_1, M_1) < \sum_{\alpha \in \Sigma} (c_2, K_2, M_2)$$

where < as means that the corresponding CN-processes are related by the partial order < as.

Corollary 2. Let $\Sigma(c_k, K_k, M_k)$ (with $K \le M$) be the retrial queue with c_k parallel servers and waiting space K_k including service space in which the intensity of retrial becomes infinity as soon as the number of customers in orbit reaches some level M_k and with arrival rate $\lambda^{(k)}$, service rate $\mu^{(k)}$ of each server and retrial rate $\theta^{(k)}$, k=1,2 satisfying $\lambda^{(1)} \leq \lambda^{(2)}$, $\mu^{(1)} \geq \mu^{(2)}$ and $\theta^{(1)} \geq \theta^{(2)}$.

 $\Sigma(c_k, K_k, M_k), \qquad k=1,2.$ Let (i_k, j_k) be the initial states of the system If $c_1 \ge c_2$, $K_1 \ge K_2$, $M_1 \le M_2$, and $(i_1, j_1) < (i_2, j_2)$, then we have

$$\Sigma(c_1, K_1, M_1) < {}_{as} \Sigma(c_2, K_2, M_2).$$

Corollary 3. (Comparisons of impatient customers) Let $\Sigma_I^{(i)}(c,K,M_i)$ be retrial queues with impatient customers and with parameters $\lambda^{(i)}$, $\mu^{(i)}$, $\theta^{(i)}$, $\alpha^{(i)}$ and $\beta^{(i)}$, i=1,2. Suppose that $\lambda^{(1)} \leq \lambda^{(2)}, \mu^{(1)} \geq \mu^{(2)}, \theta^{(1)} \geq \theta^{(2)}, \alpha^{(1)} \leq \alpha^{(2)}$ and $\beta^{(1)} \leq \beta^{(2)}$. Then for $M_1 \geq M_2$, we have

$$\Sigma_I^{(1)}(c, K, M_1) < {}_{as} \Sigma_I^{(2)}(c, K, M_2).$$

Corollary 4. (Convergence of stationary distributions) We assume that the stability $\rho = \frac{\lambda}{c\mu} \langle 1 \text{ and let } \widetilde{p}_{ij}^{(M)}, p_{ij} \text{ and } p_{ij}^{(M)} \text{be the stationary distributions}$ CN-processes in $\Sigma(c, K, M)$, $\Sigma(c, K, \infty)$ and $\Sigma(c, K, M')$, respectively. Then we have the relation $\{ \widetilde{p_{ij}}^{(M)} \} < \{ p_{ij} \} < \{ p_{ij}^{(M)} \}, M, M \ge 0$

and

$$\lim_{M\to\infty} \widetilde{p_{ij}}^{(M)} = p_{ij} = \lim_{M\to\infty} p_{ij}^{(M)}, \quad 0 \le i \le K, \quad j \ge 0.$$