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Abstract

Manufacturing systems are usually large, complex, and concurrent in nature that makes it difficult to
model and simulate the behavior in advance. The paper proposes an approach, called OPNets, for
modeling and validating manufacturing systems. The approach is based on object-oriented high-level
Petri nets in which modeling components of Petri net are constructed into object hierarchy. The objects
communicate with each other by passing messages. To enhance the reusability and maintainability, a
system are developed by object hierarchy. Inheritance among object hierarchy is also supported in

OPNets. The modeling scheme of OPNets tries to resolve the complexity problems of Petri net.
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I. INTRODUCTION

Petri nets have been found to be useful for describing and analyzing real-time systems such as
manufacturing and robotics systems [1,2,3,4,5,7,15] that are usually characterized by distributed and
concurrent nature. However, the complexity of the model is drastically increased as the number of
reachable states and events in Petri nets grows [10]. Therefore the complexity problem is one of the main
obstacles in applying Petri nets to large complex manufacturing systems.

One promising solution to the complexity problem is object-oriented approach. An object-oriented
high level Petri nets called OPNets is proposed to resolve the complexity problem. It enhances the
maintainability by organizing a system into concurrent objects and separating the synchronization

constraints from the internal structure of each object.

Il. OBJECT ORIENTED HIGH LEVEL PETRI NETS

Object-oriented high-level Petri nets called OPNets is developed to manage the complexity problem
and hence to increase the maintainability of the system. Brief description of OPNets is give in here. More

detailed explanations of OPNets are given in [9].

1. Systems

As ordinary object models, a system is modeled by objects and their relations. Objects in OPNets are
hierarchically organized. The relationships between objects are modeled by a set of links called
interconnection relations. In Figure 1, objects are represented by O and the interconnection relations R
are represented by gates g and their input and output flow relations.

SYSTEM = (O,R),

where

O : a set of objects,

R : a set of interconnection relations.

2. Objects

Each object has an external structure and an internal structure that are separated for information
hiding. External structure is designed for the message communications between objects, whereas the
internal control flow of each object is represented by the internal structure. As shown in Figure 1, the
internal structures of objects, except O,, are not identified from outside while the interconnection
relations between objects are represented externally, where objects are represented by rounded boxes.
The internal control flows of O, are also externally hidden, but shown in Figure 1 for the illustration of

the interal structure.
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2.1 External Structure of Objects

The external structure of an object O; € O is represented by the 6-tuple,
O; = (H, IG;, OG;, IM;, OM,, F;),

where

H; : an object hierarchy,

IG; : a set of input gates of object O,

OG; : a set of output gates of object O,

IM; : a set of input message queues of object O,

OM; : a set of output message queues of object O,.

F; : a set of flow relations of object O,

Figure 1. Graphical Representation of OPNet Structure

g23 gz

O,
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Parent objects are specified in an object hierarchy to incorporate inheritance across the object
hierarchy. Gates, which are non empty subset of transitions in Petri nets, execute message
communications between objects by firing. Input gates and output gates perform incoming and outgoing
message communications, respectively. Graphically, gate g; is represented by a thick solid bar as shown
in Figure 1. A message q‘ueue is a place and can be regarded as an input and output window through
which communications between outside objects and the actions of the object are possible. Message
queues are composed of reply queue to model wait-and-reply mechanism and synchronization queues to
restrict the transition firing sequences between objects. Graphically, message queues are represented by
small ovals coming out from objects where the single and double ovals represent the synchronization and
reply queues, respectively. Flow relations are represented by arrows that connect input gates and input

message queues, or output message queues and output gates.

2.2 Internal Structure of Objects

Two types of objects are defined in OPNets: primitive object and composite object. A primitive object
is a basic entity for behavior representation in which static properties and dynamic behaviors are defined.
A composite object is an aggregate of more than one primitive objects and/or other composite objects.
Figure 1 depicts a composite object O, that is an aggregate of a primitive object O,; and a composite
object O,,. Detailed discussions of internal structures of a composite object and a primitive object will be

given in the following section.

2.3 Internal Structure of a Composite Object

Internal structure of a composite object defines a set of objects contained in the composite object and
their interconnection relations. Let CO; be a composite object i and PO; denotes a primitive object i.
Then object O equals CO U PO, where CO = u; CO,; and PO = u; PO,. The internal structure of a
composite object CO;, ICO,, is characterized by the following 3-tuples.

ICO; = (X, Y, R),

where

X ={x|x e P(co), CO; ¢ X},

y=vlye PpO),

R; : a set of interconnection relations.

X is an element of power set of CO, excluding sets containing CO; itself, and ¥ is an element of power
set of PO. Interconnection relations between these objects are represented by gates and their input and

output flow relations.

2.4 Internal Structure of a Primitive Object

For each primitive object, static properties and dynamic behaviors must be clearly specified for the

complete and explicit modeling of control structures. Static properties include algebraically specified data
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structures, while dynamic behaviors show the partial ordering of actions and the influence of the object
state on its actions, which implies that actions of an object may only be enabled when the object is in a
specific state, and must be delayed until the object is in a state consistent with the execution of the
actions. For example, if a buffer is empty, then the state of the buffer is inconsistent with the execution of
a deque operation to remove an item from the buffer. The dynamic behavior of a primitive object Q,; is
shown in Figure 1.

An internal structure of a primitive object PO, can be defined as follows:

IPO; = (D, SV, S, AT, LF, IN, Mp)

where

D; : aset of attributes of PO,

SV; : aset of state variables PO;,
S.

; :aset of states of PO;,

AT; : a set of action transition of PO,
LF;: a set of local flow relations of PO,
IN; : a set of instances of PO,

M : initial marking of PO;.

A set of attribute and a set of state variables constitute a data structure of a primitive object. Attributes
and state variables are similar in semantics, however, the values of attributes are static and may be stored
in files while the state variables are changing according to the state changes of instances. State is an non
empty subset of places which represents the current status of the object. Each state is associated with an
unary state predicate characterizing the state variables. The state predicate is defined by a function
mapping from a particular state into a tuple of state values of a primitive object.

An action transition, which is a subset of transitions, plays a role of synchronization and performs
predefined actions when precondition of action transition is met. Table 1 shows the types, names,
connected message queue types and control flows of actions in action transition. An action in action
transition represents an execution of a sequential program. Action is classified as external or internal
depending on whether it provides a service to other objects or not. External actions are also divided into
asynchronous actions, synchronous actions, and response actions. Asynchronous action is a side-effect
free action that is instantly triggered upon receipt of request message disregarding the current state of the
object, therefore, it doesn't need to be sequenced with other actions. Message queues are not required to
be connected for an asynchronous action since it is invoked by other objects without any explicit
interconnection relation between the server and the client. A synchronous action of an object is invoked
synchronously with the external actions of the other object to which synchronization queue is connected.
In addition to synchronization, a response action, to which reply queue is connected, also returns the
result to the client. To internal actions, no message queues are connected since they do not provide any
service to external objects. However, partial sequences between internal actions and synchronous/

response actions should be established for the complete modeling of dynamic behavior.
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Local flow relations are internal control flows of a primitive object with the following four types:
flows from input message queues to action transitions, flows from action transitions to output message
queues, flows from states to action transitions, and flows from action transitions to states.

Each object has instances that are uniquely referenced by identifiers of the instances such as names.
Instances are represented by‘ tokens that are initially given to primitive objects. Tokens of instance type
stand for specific instances of the object, therefore, they reside within the boundary of object and are not
allowed to be created nor destroyed during the net execution. On the other hand, tokens of message type
represent the messages for communications between objects that are allowed to cross the boundary of

objects and hence allowed to be created or destroyed.

3. Object Interconnection Relations

In order to decouple the communication knowledge as much as possible from each object, we have
adopted a scheme in which both the sender and receiver of messages may not need to know the exact
communication type of the other side and the data type adaptation between the communication channels
are partly supported by an intermediate transition. Therefore the communications between objects are
performed by firing the intermediate transitions, i.e., gates. In Figure 1, firing of g; removes a message
from the message queue of object O; and puts it into that of object 0.

The interconnection relation R is a binary relation on the Cartesian product of the objects:

RcOxO.

The actual interconnection of objects is established through the gates, by selecting IGy's and OG/'s
such that if (O, Oj) € R, then OG; N IGj # &, where IGj's are the input gates of object OJ and OG/'s are
the output gates of object O} Thatis, if g € IGj and g eOGj then the O; and O; are connected through
gate g, and g is connected to omgq; and img;, where omg; € og and img; < ge. The o¢ (ep) denotes the set
of all input places (transitions) of a transition ¢ (place p) and te (pe} denotes the set of all output places
(transitions) of a transition ¢ (place p). Then O; and OJ are called a sender and a receiver of message,
respectively. Thus the interconnection relations of objects can be defined as follows:

R;={(0; 8, 0) | g4 € OGN IG}.

In Figure 1, O; and O, are connected through g; and g;.

~Type Name Connected MQ Control Flow
Internal internal action none sequenced
asynchronous none nat sequenced
action
External synchronous Synchronization sequenced
action Queue
response action Reply queue sequenced

Table 1. Types of Action
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[ll. INHERITANCE

Since large manufacturing systems are usually complex, parallel and distributed, they are difficult to
specify, simulate, and anlyze. Therefore sharing previously developed specifications or code will greatly

reduce efforts to build target systems.

1. Underlying Issues of Inheritance

Inheritance mechanism can be used as a code or specificaiton sharing mechanism among objects.
When a class inherits from other class, it also should inherit behavior in addition to attributes and
methods. Therefore some kind of behavior equivalence has to be guranteed across inheritance hierarchy.
Otherwise, the inherited behavior will collide with the behavior of object which want to inherit attributes
and methods from higher class. We call this situation as inferfere.

The key points of inheritance in OPNets are as follows:

O Reduce required modeling efforts by sharing previously developed specifications
Preserve the behavior of each object after inheriting the behavior

Preserve inter-object behavior constraints

0o oo

Avoid interference of synchronization constraints with inheritance

2. Constraints of Behavior Inheritance

The following constraints should be considered in inheriting behavior among class hierarchy.
{1 The integrity of each object
0 Synchronization constraints among objects

0 Contractual obligations

The integrity constraint is the most fundamental one among constraints. The integrity of object is
assured if the object's partial sequences of actions are preserved after inheritance. Synchronization
constraints represent the sequence of message communications among objects that shows an external
action selection sequence. They are represented by the firing sequences of gates. Contractual obligations
define semantically meaningful constraints that restrict the sequences between the original actions and the

inherited actions.

3. Temporal Logic for Defining Transition Firing Sequence

The firing sequence of transitions is defined by the temporal specification language that is revised by

Uchihara from propositional temporal logic. The synchronization constraints among objects are restricted
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by constraining the firing sequences of gates. The contractual obligations are defined by firing sequence

of the action transitions between object hierarchy. Therefore both of them can be defined by the temporal

logic. The basic definitions of temporal specification language are as follows.
A set of formulas are defined from a finite set of elements E and a finite set of states S inductively as

follows:
U Ifes Eands € D C §, then e(s,D) is a formula. D is called the domain of an element e.

O If f1 and f2 are formulas, then 1 f1, fIAf2, f1 V2, 11 =12, f1, O f1 and Of1 and $f2 are

also formulas

The operators have the following meanings:
1 means NOT,

A means AND,

V means OR,

=means IMPLY,

0 fmeans f is true for all future states

<Of means f is true for some future states

@f means f is true for the next state

f1 $f2 means f1 is true until f2 becomes true

For example, if switch € E and D={on, off}, I (switch(on, {on,off}} = @switch(off, {on, off})) is a
formula. The formula means that when the state of switch is on, the next state will always be off.
In specifying the synchronization parts, the following abbreviations are introduced for readability:

U As domain is uniquely determined by each element, a domain can be omitted, ex. e(s,D) can be

simply written as e(s)
U Fire(<gate name>) is abbreviated as e=s.
O Ife€E and s€D, e(s) is abbreviated as e=s. ex, g1(full) can be written as g1=Ffull

For example, a specification either g/ or g3 are fired in turns after firing of g/ is expressed as follows:

0 (g1=@((92=@g3) V(g3=@g2)))

4. Inheritance Procedures

The preedure to inherit behavior, attributes, and methods consists of the following five steps:
U (Step 1) Behavior Composition Procedure: Compose behaviors of super-object and sub-object.

Q1 (Step 2) Filtering Procedure: Eliminate the composed nets which do not meet the contractual

obligations.
U (Step 3) Snet Construction Procedure: Construct synchronization nets from the synchronization
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contraints (firing sequence of gates).
(Step 4) IE Net Construction Procedure: Construct interface equivalent nets for the filtered nets

of step 2.
(Step 5) Synthesis Procedure: Synthesize the synchronized nets from the synchronization of step

3 and the interface equivalent nets of step 4.

The first step intends to merge the all possible combinations of the behavior of super class and sub

class while maintaing the integrity of each object. The second stpe eliminates the composed nets which

do not meet the contractual obligations. In the third step, the synchronization constraints are defined by a

form of temporal logic. The synchronization constraints defined in a form of temproal logic are

transformed into a form of Petri nets as follows:

a

(Step 3.1) Decomposition Procedure: The formulas are decomposed into current formulas and
future formulas. Current formulas do not include temporal operators. Future formulas are also
decomposed into current and future formulas from the next time point view. After every type of
future formulas has been repeatedly decomposed, a graph is derived, where each set of the
elements in current formulas form a transition. This graph is an incomplete model satisfying all

specifications other than the eventuality formulas that are formulas of the form Of, 1 0 for

(G f1$f2).
(Step 3.2) Elimination Procedure: Edges with an unsatisfiable eventuality formulas are deleted
from the graph. The graph remaining after the elimination procedure is a complete model of the

initial specification.

The forth step derives the interface equivalent nets from the filtered nets in the same way as the local

analysis of the behavioral analysis [9]. In the {inal step, the synchronization nets are then synthesized

Object A Object AA

ogAAl

M AGT BAA3

Figure 2. An Object Hierarchy.

from the synchronization constraint net and the interface eugivalent net. After these procedures has
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Figure 4. A Synthesized Net After Inheritance

F
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5. An Example to lllustrate Inheritance Procedure

An object A is a super class of object AA and their behaviors are shown in Figure 2. The
synchronization constraints among object A and object AA are defined as follows:

0 (gA2=@(gAA1)) N (gAA2$GA3)).

The formula states that the firing of gA2 forces gAA1 to be fired in the next state and gAAZ2 can be
fired after firing gA3.

The contractual obligation can be defined as follows.

O ((AA1T$AZ2T) A (AA2TEA3T) A (A4T = @(AA3T)).

The formula states that an action transition AA1T can be fired after A2T has fired, the firing of A3T
enables AA2T to be fired in the later states, and the firing of A4T forces AA3T to be fired in the next
state.

In the first step, all possible combinations of action firing sequence between object A and objcet AA
are generated. The number of possible combination is 35. After eliminating unmeaningful sequences, we
can obtain only two combinations as follows:

1: A1T~ A2T> AAITA3T- AA2T- A4T- AA3T- AA4T

2: A1T- A2T- A3T- AAIT- AA2T- A4T- AA3T- AA4T

The interface equivalent net of the first combination is obtained as shown in Figure 3. Among the two
combinations, the first one does not meet the synchronization constraint that the gA2 should be fired
before enabling gAA1. Therefore the resulting net that meets all the constraints is the net derived from

the second combination as shown in Figure 4.

IV. Analysis of the Inter-object Behavior

Since analyzing a large complex net in a single step often produces erroneous results and is
computationally inefficient, we have developed a two step analysis method [9] which validates each
object in a first step and then checks the synchronization constraints among the objects as a global
analysis scheme. The procedure provides a way to manage the complexity by dividing the net into the
smaller nets and then applies the analysis in twe steps keeping the global validation intact. Briefly, the
two step validation procedure is as follows (detailed discussions are given in [9])

In the first step, a local analysis is performed to validate the internal behavior of each object and to
draw an interface equivalent net that shows only the firing sequence of the input and output gates, i.e., the
synchronization constraints, In the second step, a synchronization analysis is performed to validate the
interface equivalent net, which is constructed in the first step, to check the consistency of
communications between objects. The interface equivalent net of an automatic storage retrieval system in

which no deadlock detected is given in [9).
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V. CONCLUDING REMARKS

OPNets integrates the formalities and elegant expressions for concurrent control structures of the Petri
nets, and the abstraction and powerful structuring schemes of the object-oriented approach. OPNets
particularly focuses on the independent structure of objects and hence on the maintainability and
reusability. With a view to improve the independence of objects, the communication knowledges are
decoupled as much as possible from each object and synchronization constraints are clearly separated
from the internal control logic of each object. Validation of the whole system is much simpler when the
partitioned nets are analyzed separately and then the communications are checked as a second step.

Contrary to the benefits, the structure of OPNets increases the number of places and transitions
because message queues and gates should be added in order to separate the internal structure from the
external structure. The maintainable and reusable structure can, however, outweigh the burden of simple
increase in the number of places and transitions. A mechanism to inherit a2 behavior in addition to
attributes and actions is being developed that will preserve the integrity of each objects and the
synchronization constraints. An execution to the timed Petri nets that incorporates timing constraints into

the OPNets is remained as a further study.
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