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Motion Characteristic Capturing: Example Guided Inverse Kinematics
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Abstract

This paper extends and enhances the existing inverse Kinematics technique using the concept of motion characteristic

capturing. Motion characteristic capturing is not about measuring motion by tracking body points.
from pre-measured motion data. extracts the motion characteristics, and applies them in animating other bodies.

Instead, it starts
The

resulting motion resembles the originally measured one in spite of arbitrary dimensional differences between the bodies.

Motion characteristic capturing is a new principle in kinematic motion generalization to process measurements and

generate realistic animation of human being or other living creatures.

1 Introduction

Animating human motion has been a great challenge. The
task may appear easy at the first look since we can
completely command an articulated figure by supplying joint
angles. However, the difficulty stems from the fact that
there are too many things to control. Human body has 206
bones and hundreds of muscles. A reasonable model of it
can easily have 40 degrees of freedom. Computing such
number of joint angles so that the resulting motion resembles
that of a real human is not a trivial task. Among diverse
approaches to solve this problem, inverse kinematics and
motion capturing are just two. The algorithm proposed in
this paper is about the half way between these two
approaches.

Inverse kinematics was originated from robotics field. It
computes joint angles that position the end-effector at a
desired location. When the end-effector needs to follow a
certain trajectory, the whole body motion can be generated
by calling inverse kinematics repeatedly at the sample points
along the trajectory.

In robotics, major interest is on the six DOF robots. Since
the end-effector has six DOFs in general (three for position,
and the other three for orientation), inverse kinematics on a
six DOF robot gives a unique or at most four different
solutions. However, if a model has 40 DOFs, there exist an
infinite number of solutions. and only one of them is
selected for the frame.

Because the selection is purely up to the numerical
process employed, even though the end-effector follows
anticipated trajectory. joint angles can make abrupt changes.
Therefore neighboring frames won't have coherence, and
simple replay of those frames may result in a jerky

animation.  Usually the numerical process picks a
configuration that is reasonably close to the previous
configuration. Therefore, in interactive demonstration, many
times the lacking coherence is overlooked. When the above
result is recorded into a video disk and replayed at a normal
speed, however, the reasonable closeness is not acceptable to
human eyes, and the lacking coherence produces quite
unpleasant artifacts.

Motion capturing is an effective technique to measure and
copy the complex motion of articulated characters. However,
this technique at its current state has two major drawbacks.
First, the measurement errors are far from negligible, and
without elaborate manual processing the resulting animation
looks shaky and unrealistic. The other drawback, which is
directly relevant to this paper, is that the data is for a
specific subject in performing a specific motion. Obviously,
the anthropometric scale between the measured subject and
to-be-animated figure will be different. Also, the target
motion to be animated might be slightly different from the
measured motion.  Several partial solutions to  this
generalization problem have been proposed{13][11]. However,
the motion characteristic capturing effort does not explicitly
appear in their equations yet.

Motion characteristic capturing, the algorithm we propose
in this paper, extracts the characteristics implicitly residing in
a motion and applies them to other bodies to obtain similar
motions. Some people in biomechanics mention it as motion
copying{7]. This technique is practiced frequently in sports.
Many coaches and athletes try to copy the champion. For
example, to teach how to serve in tennis, coaches frequently
adopt a service from currently successful players, and make
his trainee repeat the motion untit the motion pattemn
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resembles the original one.

Our motion characteristic capturing is realized by example
guided inverse kinematics, which combines motion capturing
with inverse kinematics. A set of motion capture data is
used as an example to be imitated. Before starting the
inverse kinematics. the objective function is augmented with
several extra terms that will drive the inverse Kinematics
solution to imitate the example configuration at that moment.
The minimization of the objective function will have to do
two things at the same time: minimizing the gap between
the goal and current end-effector position, and imitating the
original motion.

Motion characteristic capturing
Kinematics and motion capturing.

improves both inverse
As pointed earlier, the

redundancy in the model causes the lacking coherence
problem in inverse kinematics. In motion characteristic
capturing, however, the surplus DOFs are involved in

imitating the example motion. Therefore the selection among
the multiple choices is not arbitrary. Instead the new inverse
kinematics provides a single choice which is smooth as long
as the original motion was smooth. Experiments(Section 2.3)
prove that the resulting motion is coherent. Compared with
motion capturing, the motion characteristic capturing uses
measurements in a much flexible way. From a set of
measurement virtually any number of variation is possible.
Still the resulting variations all resemble the original motion
in an optimal sense.

The concept of motion characteristic capturing is general,
and applicable to any articulated structures. It is an effective
technique to animate high DOF articulated models from a
limited set of motion capture data.

2 Example Guided Inverse Kinematics (EGIK)

Even though people are quite good at noticing the similarity
between two motions, it is challenging to describe such a
subjective criteria using quantitative terms. In this section we
will look at different foci of imitation, define a measure of
motion similarity, formulate the objective function for the
example guided inverse kinematics, and show how weights
can be introduced in combining the end-effector goal and the
motion characteristic capturing goal to obtain the desired

motion.

2.1 The Focus of Imitation

As a caricature is not a photo picture, our motion
characteristic capturing is not motion copying. A caricature
tries to emphasize unique characteristics of the character.
Likewise, imitating a motion needs to have a focus. In
general, people perceive that two motions look similar if the
angles are kept the same at the corresponding joints. Such
criteria can be easily satisfied when the ratio between the
corresponding links is uniform.

When the anthropometric scale of the two articulated
figures is not uniform, however, the above criteria do not
have much sense due to the following two reasons.

e When there exists a closed loop, using the identical joint
angles may violate important constraints.

o When the end-effector trajectory is the focus of imitation
{(c.g.. when a person write the letter "A’ in the space with
his finger tip, and another person is imitating it), simple
joint angle copying may not imitate the end-effector motion
pattern.

Because it is highly probable that the anthropometry of the
measured subject is not proportional to that of to-be-animated
figure, in most cases the joint angle following should be
compromised  with  the end-effector following.  The
compromise should be based on what is the current focus of
imitation. In this paper we consider two imitation foci:

e The joint angle pattern (A-pattern)
o The end-effector motion pattern (E-pattern)

These two types of imitation foci are not exhaustive, but are
frequently used as the goal of imitation. And the other types
of motion characteristic capturing can be augmented using a
similar method if needed.

In the following subsection we define the new
objective function in which the above two types of imitation
effort can be amalgamated.

will

2.2 The New Objective Function

End-effector Function
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Figure 1: Overview of motion characteristic capturing.

Figure 1 is a diagram showing how motion characteristic
capturing is carried out. The motion data library contains a
number of exemplary data sets. A data set consists of the
joint angle data 8, 8, B, and the end-effector position data
Ei. Ea..., E. at each frame of the motion. Here #n is the total
number of frames. The joint angle data @ is the J-tuple
vector (8',..., @J;) where J is the number of joints, and the
end-effector position data Ei is the three dimensional vector
€, ).

On the other hand, from the geometrical information of
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the to-be-animated figure, the end-effector function e(f) is
calculated using forward kinematics. The end-effector function
ef§). which is dependent on the joint variable. gives the
global position of end-effector. In addition to the above. the
weight parameters a and § (discussed later) participate in
forming the objective function. Now the inverse kinematics
problem can be solved to obtain the optimal joint angle data
8,, 0,,.... 0, for the new characteristic preserving motion.

The basic idea of example guided inverse Kinematics is to
allow a small fraction of error in end-effector position in
order to imitate the joint angle pattern. We can think of two
error terms, E-error and A-error. E-error is the end-effector's
positional error lie(§) - £],, thus the small E-error means the
E-pattern characteristics are accurately transferred. A-error is
the joint angle error ||8 - &)} thus the small A-error means
the A-pattern characteristics are accurately transferred. The
objective function of conventional inverse kinematics consists
of a single term, ie., |le(§) - E)|. For our example guided
inverse kinematics, A-errors are added as extra terms.
Therefore our objective function is a weighted sum of
E-error and A-errors at all frames during the motion, and
looks like the following,

G'(&wﬂ&&)—ﬁ
s lh-6) 3-8,
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where » is the total number of frames. We should minimize
the function G() to get the optimal motion.

Note that the above function contains the error sums of
velocity and acceleration in joint space. In animation, the
velocity and acceleration characteristics have significant
impacts as well as the static positional characteristics.
Especially, velocity is susceptible to human eyes. Therefore it
must be considered for realistic animation.

Here, a and B are weights specified by the animator
interactively. For example, o=1,p=0 is the case of pure
inverse kinematics, a=0,f=1 is the case of pure joint angle
copying, and a=0.5,p=0.5 is the case in which E-pattern and
A-pattern are considered with equal weights. This means that
by having different values of a and 8, we can control the
extents of the E-pattern and A-pattern characteristic transfers,
and generate an infinite variety of motions.

In the inverse kinematics, achieving the end-effector goal
is the primary target. The reader might worry a nonzero
value of B causes failure in achieving the end-effector goal.
However, it was one of our most surprising results that a
small value of [ (e.g, a=0.99.5=0.01) could transfer the
motion characteristics quite well, while the error in
end-effector positioning was negligible (less than 0.1\% of
the total link length in the worst case). Section 2.3 describes
more details on this.

We admit our EGIK is very similar to the Gleicher's work
in that he addressed the problem of adapting an animated
motion from one character to another preserving original
qualitiey. In his optimization method he imposed end-effector
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Norman Abnorman-|{ Abnorman-2

Figure 2 Human models.

constraints stringently, so he could fulfitled the end-effector

w

Figure 3:

Snapshots of throwing motions of

Norman and Abnromans.

goals exactly. But due to this stringency, the resulting
motion may include undesirable data in a singular point.
One remedy to this is to allow some flexibility to the
end-effector. Because in EGIK the E-error and A-error are
dealt with in one objective function as a primary task, we
can imply this flexibility of the end-effector. As a result,
tolerating some small end-effector errors, it is possible to
obtain a rather robust motion data even in the singular
moments.

2.3 Experiments

Our motion  characteristic  capturing  algorithm  was
implemented on Silicon Graphics Octane MXI workstation.

We modeled three articulated human figures. The first one,
called Norman, is the subject whose motion was measured.
The second and third ones are called Abmerman-1 and
Abnorman-2, respectively. As shown in Figure 2,
Abnorman-1 has longer limbs and shorter torso than Norman,
while Abnorman-2 has excessively shorter limbs and longer
torso. These two figures are out of proportion on purpose. in
order to demonstrate that in spite of the anthropometric
differences our algorithm is capable of producing the similar
motion.

At different values of a and p. the characteristics in the
throwing motion of Norman(Figure 3) was transferred to
Abnormans. Figure 3 shows snapshots during the
characteristic transfers. When A-pattern is given more
emphasis than E-pattern (small a, large B), Abnormans will
imitate the global pattern of Norman's motion, and when
E-pattern is given more emphasis than A-pattern (large a,
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small B), Abnormans will put relatively more effort on
following the end-effector trajectory of Norman. In animating
Abnormans, it would be reasonable to scale the end-effector
trajectories proportional to the size of to-be-animated figures.
However, we did not scale the end-effector trajectories in the
experiment to demonstrate the adaptability of our algorithm.

Figure 4 shows A-error and E-error of Abnormans at
different values of a and B. As expected. a larger a value (B
=]-a) reduces the end-effector errors but increases the
joint-angle errors. In the first of Figure 4, the errors of
Abnorman-1 are reduced rapidly even with a small value of
a or P. In the second of Figure 4, the errors of Abnorman-2
drop slower than those of Abnorman-1. It is predictable; the
anthropometric discrepancy of Abnorman-2 is a Jot more
excessive than that of Abnorman-1.

The graphs in Figure 5 show the shoulder angle variations
of Abnormans during the throwing motion. The fluctuating
solid line is the pure E-pattern case(a=1.5=0), the fine dotted
line is pure A-pattern case(a=0.p=1), and the other two lines
are the cases of a=0.9.p=0.1 and a=0.99.=0.01. Here what
attracts our attention is the cases of a=0.9.3=0.1 and ¢=0.99,
$=0.01, in which joint motions follow the original joint angle
pattern quite accurately if the anthropometric difference is not

Figure 4: Normalized average errors of

Abnormans.
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excessive. At the same time the end-effector errors are
considerably small. (In Figure 5(b), due to the excessive
anthropometric  difference, a small value of P could not
imitate Norman's joint angle pattern.)

In most cases, a value between 09 and | was a
reasonable choice for a. This result can be explained by
Figures 4 and 5. In Figure 5(a), if 0.9 < a < 1.0 E-error is
almost negligible. Even though A-emor goes high at this
value of a. the joint angle curve doesn't have sharp edges
(Figure 5). Moreover, the global pattern of the joint curve is
similar to the original pattern (the case when a:p = 0:10) as
shown in Figure S5(a). When the anthropometrical gap is
huge, even though the pattern of joint anmgle deviates
quantitatively from the original one (Figure 3(b)), the
animated result still seems to preserve the original motion
characteristics. Refer to the animation put on the web
introduced below.

Table 1 summarizes the end-effector errors at a few (a, B)
choices. With a=09,p=0.1, Abnorman-l and Abnorman-2
could follow the end-effector trajectory within 0.02% and 1%
errors, respectively. When we use a=0.99.8=0.01, the errors
are reduced almost to zero, while the joint angle pattern is
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(a) Abnorman-1.

preserved quite well. If the anthropometric difference is not
excessive, for example in Figure 5(a), joint angle error of
the two cases(9:1, 99:1) was not distinguishable, but the
end-effector error could be reduced significantly. We present
these animation results as movie file in
"http://graphics.snu.ac.kr/document/paper/journal/invkin/".

a B [ Abnorman-1 Abnorman-2
0.0 10 | 0.048 017
0.5 05 0.0017 0.047
0.9 0.1 0.0002 0.011

(b) Abnorman-2.

Figure 5. Shoulder angle variations of

Abnormans.
0.99 0.01 0.000034 0.00053
1.0 0.0 0.0 0.0

Table 1: Average errors of end-effector. (Normalized with
respect to the total-link-length of each figure.)

3 Conclusion and Future Work

The characteristic capturing is a kinematic
generalization, a new attempt to imitate a motion in a
characteristic-preserving way. It improved the existing inverse
kinematics technique remarkably. By sacrificing just a small
fraction (0.1% of total link length) of end-effector goal
achievement, we could produce natural motion preserving the
original joint angle motion pattern. In most animations, 0.1%
error is almost negligible even in tasks such as grasping in
which the end-effector goal is a critical element. Also, we
extended the algorithm to the exampleless inverse kinematics.
Our algorithm can contribute to the applications that need
elaborate control of inverse kinematics.

Here are some items left for future work.

motion

e A-pattern and E-pattern  were easily converted to
quantitative terms. But there are many other qualitative
aspects such as slow/quick, gentle/wild. All these should be
added to the objective function in the future.

e Dynamic soundness [8] should be considered. Copying the
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motion kinematically is not feasible sometimes. because of
the difference in the strength of the two bodies, or some
other factors. Dynamic aspects are not negligible in realizing
the motion of non-zero mass entities in the physical world.
Therefore our kinematic imitation should be further refined
by dynamic adjustment.
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