w4t 2 WE duF: AlEYoly

(o]

A4, R.S.Ramakrishna
FFAsrled AREAFTEY

peacemak @geguri kjist.ac.kr, rsr@Kkjist.ac.kr

Distributed/parallel Algorithm Simulator

o
Yung-Jin Suh and R.S.Ramakrishna
Department of Information and Communications
Kwang-Ju Institute of Science and Technology(K-JIST)

peacemak @geguri.kjist.ac kr, rsr@kjist.ac.kr

ABSTACT

A new distributed/parallel algorithm simulator, DASim(Distributed Algorithm Simulator), is proposed
in this paper. The idea is to ease the task of design, analysis and implementation of distributed
algorithms. A small high level language has been proposed for the purpose. Through this
non-language specific high level language, the users are spared from the tedious details about how
to program distributed or parallel algorithms. Further, visualization of these algorithms are pretty
helpful to understand behaviors of these algorithms.

1. Instruction To simulate distributed/parallel algorithms we
employ a small language. This front-end affords easy
When designing, debugging, and understanding to debugging and use. Fig.l shows the structure of
computational algorithms, it is quite helpful to proposed language.
visualize the results of algorithms. Although a lot of With an eye on economy, only basic mathematical
work has already been done in this research and message passing operations are provided. It is
area[1,2,3], there are not many effective simulators. A however, possible to define extraneous macros
distributed/parallel algorithm simulator comes with through the imports part. The system has been
attractive attributes. Programming on simulator can developed using Java. Hence, all the pre-defined Java
be free from any specific programming language. classes are available for use in this part. Some

Users do not need to know the whole bothersome .
syntax of a language or functions in the library. imports :: ...
Even users who do not know how to program a top OIogy $eee
distributed or parallel algorithm, can simulate these algorithm o eee
algorithms with the help of higher level concepts: No variables :: ...
knowledge of network programming is needed. A messages :: ...
small language for describing algorithms that runs on inifiator :: ...
an integrated simulator, named DASim has been
proposed in this paper. {.",} ..

: noninifiator ::
2. A small Language for Distributed/parallel {'"}

Algorithm Description. .
£ p Fig. 1. small language template

777



199945 =54 Bes) 7

constructs for sending a message, receiving a

message, broadcasting a message, and decision
making have already been included for .convenience.
Any topology can be simulated on DASim. Topology
part only contains ascii-file name or predefined
topology name. This file contains information about
links and starting configurations such as initiator,
weight etc.

Algorithm is used just to specify the name of
program. As DASIm is basically simulates message
passing algorithms, variables part declares variables
located in individual processors. Messages part is
used to define messages passed among processors.
Initiator and noninitiator parts are the cores of the
template. They contains the algorithm which users
want to execute. Initiator part is run by all initiators,
while noninitiator part is run by all non-initiators.
We have tried to make it as easy and simple as
possible. As we mentioned previous, user can employ
pre-defined functions to pass messages and to
terminate a program. To implement this part, JLex[5]
and Java_Cup[6] have been employed. JLex DFA
based lexers are usually faster than hand written
lexers and LALR(1) parser generated by CUP is
usually faster than PCCTS LL(k) parsers[6]. The
most important reason for choosing them is both are

available in source code.

3. DASim

Distributed/parallel algorithm simulator (DASim) is

very flexible and customizable. Any distributed

Node_set

¥ creates

»

Clock(logical)

n >

Node fi
Set_initiator()
run()

T < Watcher

) v contains

Link'

Message
queue

Fig. 2. structure of execution part

sheut =74 Vol. 26. No. 2

algorithm can be simulated on any topology.
DASim consists of three main parts, configuration,
distributed algorithm execution, and visualization part.
3.1 Configuration part

The

configuration such as topology, nodes, and links, the

configuration part indicates the network

execution configuration, and visualization
configuration. In particular, the simulator
accommodates flexibility at compile time. The

topology is fixed during simulation, however. Plans
are afoot to incorporate run time flexibility. Only one
link between two nodes is permitted. Links can be
either bi-directional or uni-directional, and can be
weighted.

3.2 Execution part

Distributed algorithm execution part is based on
transition system with message passing. Fig. 2.
shows its structure. Each node has a message queue.
This queue serves messages basically according to a
FIFO(first-in-first-out)  strategy. The Node_set
all of the nodes that participate
algorithm. It creates all the processes and indicates
initiators to begin an algorithm. Watcher serve as

controls in an

terminator. In distributed system there is no real
global clock to check when an action such as
message passing occurred. We use a logical cloék[4]
to record all the events that occur during simulation.
Messages passed between nodes can be of any type
and size(subject to certain constraints). Asynchronous
messaging is assumed throughout.

3.3 Visualization part
The visualization part exhibits the data and the
messages. Basically DASim provides source code
animation view, Lamport view[4], and message
passing view. Fig. 3. is an example of Lamport view.
Visualization part is divided into two modules.
One of them

renderer. The main role of the modeler is to collect

is a modeler and the other is a
all the information about what to display and analyse
them. Tenderer actually shows the data and the
messages. The views provide a precise and an exact
As
higher display abstraction would be required. DASim

portrait. the number of processors increases,

778



19994 E #EARAY 712

e i3 Vol. 26. No. 2

Pre

181V

1777

pes

Fig. 3. Lamport view

provides a kind of level abstraction and scrolling. We
also tried to
algorithm codes, so that users can concentrate on

separate visualization codes from

programming without being disturbed by visualization.
The visualization configuration can be set up not
only before execution but also during execution.
Graphic and tex outputs have been provided. Fig. 4.
is an example of text output.

4. Conclusion and Future Work

Using text output alone to understand the

behavior of systems with multiple concurrent flows of
control is tedious and hard. A new simulator has

essage from with 1
Message from with 2
Process 2 receive
Message from EZ] 10 [3] with |
Messags from 3 m with 3
Process 3 re
Message ﬁom [3] 10 [4] with 2
Process 3 receive
Message from [3] to (4] wnh I
Message from [4] ‘ln 5] wi
Process 4 race
Message from [4] tu [5] with 3
Pracess 4 receive
Message from [4] tu [5] with 2
Process 4 received
Message from [ }10 ES] with |
Viassage from [5 11 with &
Pracess 5 race
Message from [5] m [13 with 4
Process b received 3
Message from [B] to [1] with 3
Process 5 raceive
Message fram [5] to [1] with 2
Process 5 recaive
Megsage from [5] to [1] with 1
Process | received
Process | received 4
Process | recelved 3
Process | recelved 2
] Process 1 received 1
| found the leader!!!l}

g
9]
0
i
12
3
14
15
1B
17
18
13
il
21
iz
iz
]
b3
HED)
|27
1128
2
£l

Fig. 4. Example of text output

been the  burden for
distributed/parallel To test distributed
and to watch the progresses, DASIim
DASim

simulates asynchronous algorithms at present. It will

proposed to ease
algorithms.
algorithms
would provide invaluable assistance. just
be possible to simulate synchronous ones on it in the
near future. DASim simulates only one algorithm at
any given time, but running a couple of algorithms at
the same time to compare the performance and

behavior of different algorithms would be valuable.
References

{11 M. H. Brown and R. Sedgewick. A System for
Algorithm Animation.
18(3):177-186, July 1984.
[21 J. A  Kohl and G. A. Geist. The PVM 34
Tracing Facility and XPVM 1.1. In H. El-Rewini and
B. D. the
Twenty-Ninth Hawaili International Conference on
System Sciences, vol. 1, pages 290-299, 1996.

{31 J. T. Stasko and E. Kraemer. A Methodology for
Building Application Specific Visualizations of Parallel
Programs. Journal of Parallel and Distributed
Computing, 18:258-264, 1993.

[4] L. Lamport. Time, clocks, and the ordering of

Computer Graphics,

Shriver, editors, Proceedings of

events in a distributed system. Commun. ACM 21,
558-564, 1978.

5] Elliot Berk. JLex: A lexical analyzer generator for
Java(TM), 1997.

[6] Scott E. Hudson. CUP parser generator for Java,
1997.

779



