Poster 10 ## Preparation of ¹³C and ¹⁵N Labelled 28-mer RNA in the Yeast Double-stranded RNA Virus for Heteronuclear Multi-dimensional NMR Studies Hae-Kap Cheong¹, Jun-Seok Yoo^{1,2}, Ignacio Tinoco, Jr.³ and Chaejoon Cheong¹ ¹Magnetic Resonance Team, Korea Basic Science Institute, Taejon, Korea, ²College of Pharmacy, Seoul National University, Seoul, Korea and ³Department of Chemistry, University of California, Berkeley, CA, U.S.A. X-ray crystallography and NMR spectroscopy are currently the only methods available for determining high resolution structures of biomacromolecules. However, crystallization of RNAs is still a significant challenge despite continuous improvement. Thus NMR spectroscopy presently represents the most promising approach for RNA structure determination. The advent of methods for preparation of ¹⁵N and/or ¹³C enriched RNAs has added wings to such prospects of NMR spectroscopy. To determine the three-dimensional structure of the VBS region which is responsible for viral protein binding and replication, we have prepared ¹³C/¹⁵N doubly-labelled RNA containing 28 nucleotides. Heteronuclear multi-dimensional experiments are being performed on this RNA molecule for the simplified assignment and structure determination.