Poster 11 ## Solution Structure of an Antimicrobial Peptide Gaegurin4 Sang Ho Park¹, Ji Hyun Lee¹, Yun Kyong Kim¹, Byong Jae Lee², Bong Jin Lee¹ ¹Department of Pharmacy, Seoul Natl Univ ²Lab. of Molecular Genetics, Institute for Molecular Biology and Genetics, Seoul Natl Univ The gaegurin 4 is an antimicrobial peptide from the skin of a korean frog, rana rugosa. They show a broad range of activity against prokaryote cells but lyse eukayrotic cells poorly. Circular dichroism investigations revealed that the gaegurin 4 adopts mainly an α -helical conformation in both trifluoroethanol (TFE)/H₂O (1:1.v/vmixture and in dodecylphosphocholine sodiumdodecylsulfate (SDS) micelle environments, but flexible random structure in H_2O . Using $^1H^{-15}N$ NMR spectroscopy, a complete 1H and ^{15}N resonance assignments have been obtained for the peptide gaegurin 4 in TFE/H2O (1:1, v/v) mixture. The secondary structure, derived from the characteristic patterns of dipolar connectivities between backbone protons, chemical shifts, and three-bond $J_{HNH\alpha}$ coupling constants, consists of an α -helix with amphiphatic character and disulfide bridge between residues cys31 and cys37. The three-dimensional structure calculation of gaegurin 4 in TFE/H2O mixture is in progress. In addition, we are planning to elucidate the structure in SDS micelles and in phospholipid bicelles, more membrane-mimetic environments.