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1. Introduction

Short term forecasts of streamflow and lake levels are made routinely by various
methods and are used to guide the operation of water resource facilities. Recently (Lall et
al, in press, a; Abarbanel et al, 1996, Kember et al., 1993; Smith, 1991; Yakowitz and
Karlsson, 1987), nonparametric regression methods have been proposed for forecasting
hydrologic time series. Lall et al. (in press, a) were able to forecast the volume of the
Great Salt Lake (GSL) for up to 4 years in advance during extreme conditions. They
formulated a forecasting model using recent techniques (Abarbanel et al, 1993) for
reconstructing the dynamics of a nonlinear system from a single observed state variable.
Multivariate Adaptive Regression Splines (MARS) due to Friedman (1991) were used to
nonparametrically recover the nonlinear forecasting function from the time series of GSL
volume. Such methods for time series analysis are computationally intensive, and can also
require long high quality records.

Efficient parameter selection is important for nonparametric function approximation. The
strategy provided here is capable of automatically selecting the size of the neighborhood and
the order of the polynomial used at each point of estimate. This allows one to represent
linear (e.g., classical AR models) or polynomial dynamics, as well as locally approximating
more complex dynamics.

In this paper, it is presented that the application of multivariate, locally weighted
polynomial regression with locally chosen parameters for nonparametrically approximating
the dynamics of the system at each point of prediction. First, Singular Spectrum
Analysis(Vautard et al., 1992, Keppenne and Ghil, 1992) is applied to a time series of the
Southern Oscillation index(SOI) and then the SOI is filtered out unrelated variability to El
Nifio events or La Nifia events. Blind forecasting El Nifio/LLa Nifia up to two years using
the filtered SOI are presented.

2. The Nonparametric Forecasting Model

The forecast f(x,) at time T is obtained through the solution to a general regression
model given as

yi=f(xi) +ei i:1,...,r1 (1)
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where the function f(.) can be thought of as a regression function.

A nonparametric regression problem results if consider a solution of this problem such
that (1) no prior assumption is made about the explicit functional form of f(.), (2) the
interest is in approximating f(.) at each desired location, presuming that it belongs to a
fairly rich class of functions (e.g., differentiable functions), and (3) the estimate is “local,”
ie, the influence of distant points on the regression at a given point diminishes with
distance. The target function f(.) may be approximated at a point X, by retaining the
leading terms in its Taylor's series expansion.

This is equivalent to a low order polynomial approximation of the function at that point
using k neighboring data points. The idea is illustrated for the univariate case in Figure 1.
In the multivariate case one uses k neighbors x; , j =1.k, of x, in a vector space of
dimension d, to evaluate a low order polynomial regression using the corresponding y;. The
k neighbors are found as the state vectors that are closest in distance to the vector x..
Thus, in the time series context it is located the k data patterns that are most similar to

the state vector Vt , and evaluated a low-order polynomial regression with these data as

an approximation to f( v, ).
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Figure 1. Local linear and local quadratic approximation of f(x) = sin (x)e 0% at two
points. This "damped” oscillation is representative of the quasi-periodic oscillations seen in
the SOI (Southern Oscillation Index) data upon bandpassing it at frequencies that have high
spectral power. The data (circles) were generated using equation (1), with ei~N(0,0.1). The
function f(x) is shown as the dashed line, and the local regressions are shown as heavy
solid lines. For forecasting, x would be a d dimensional vector in state space, the neighbors
would be the closest points in IR, and a multivariate local regression will be needed.

A detailed exposition of weighted local regression may be found in Cleveland(1979),
Cleveland and Devlin (1988), Cleveland et al. (1988), and Lall et al. (in press, a).
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Localization of the regression is achieved by using only k neighbors of the prediction point,
and also by weighting the data with a monotonic weight function, with weights decreasing
as a function of distance of the neighbor from the prediction point.

In this paper, locally linear (p=1) , quadratic (p=2), and quadratic with cross products
(p=2') approximations are considered. Say Z is denoted as a data matrix formed by
augmenting the matrix {x} \, of k nearest neighbors of X, to complete a polynomial basis
of order p. If p =1, ie, a linear regression is needed, then Z is formed by augmenting
{x} ., by a column with all entries equal to 1, to represent the constant term in the
regression. If p=2, one also adds the square of each column of {x} \ , If p=2’, then the all
unique cross products across columns in {x} k.o , are also added to Z. The number of
neighbors k considered ranges from 2*d’ to n, where d' is the column dimension of Z
Thus global linear and quadratic models are parts of the set considered. Any data vector x;
is similarly mapped into a data matrix z.

The order p weighted local regression using k nearest neighbors is then defined
through the model

y=ZB+te (2)
where v is a k*l vector, Z is a k*d’ matrix, B is a d’*1 vector of regression coefficients
and e is a k! vector of residuals that are assumed to be independent and locally
homogeneous.

The coefficients [ are evaluated as the solution to

Min(y —Z8) "W (y —Zp8) (3)
B

which is given as
B=(Z"W2)"'Z"Wy (4
which gives us the desired forecast as

SOIt+1=Zn/9 (5)

where z, is the polynomial basis representation of the prediction state vector V.

The quality of such a low-order weighted polynomial approximation depends on the
size of the neighborhood and the order of the polynomial. For a given order, as the size of
the neighborhood increases, the variance of estimate decreases while the bias of estimate
may increase. Likewise, increasing the order of the polynomial may reduce the bias or
approximation error, while increasing the variance of estimate if the number of points in the
neighborhood is kept the same. This bias-variance trade-off suggests the possibility of
searching for an optimal model for local estimation by varying the order of the local
polynomial, and the size of the neighborhood.

3. Application

The SOI(Southern Oscilliation Index) is formed as the monthly mean difference in
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sea-level pressure (in mb) (SLP) at Tahiti (approximately 150W, 175S) and Darwin
(approximately 131E, 125S). The El Nifio Southern Oscillation (ENSQ) refers to an event in
the tropical Pacific Ocean that is a significant perturbation of general atmospheric
circulation. The ENSQ has a typical life cycle of about 3-8 years. When the SOl is a low
negative value, a warm event (El Nifio) is in progress, ie., the atmospheric pressure in the
eastern Pacific decreases, and the trade winds usually weaken. Then, the warm-water pool
extends eastward, piling up off the coast of Peru and southern Ecuador. The opposite
phase of the ENSO is called a La Nina event. An jmportant aspect of an ENSO event is
the change in precipitation patterns over the world. Western United States precipitation and
streamflow are enhanced during an El Nino event and drought occurs over the continental
United States with a La Nifia event(Kahya and Dracup, 1993; Ropelewski and Halpert, 1987;
Keppenne and Ghil, 1992).

The application in this paper is the forecast of Southern Oscillation Index. First,
Singular Spectrum Analysis(Vautard and Ghil, 1989; Rasmusson, 1990; Vautard et al., 1992;
Keppenne and Ghil, 1992) is applied to a time series of the Southern Oscillation index(SOI).
The SSA filters out variability unrelated to the Souther Oscillation and separates the high
frequency variability from the lower frequency El Nifio cycle(Moon and Lall , 1996). In
Figure 2, the filtered SOHRC1-6) is compared with a 5 month moving average of the
original SOI time series (dotted). The white arrows points to El Nifio events and the black
ones to La Nifia events. The correlation between the RC 1-6 and 5-month moving average
is 0.95. The 5 month moving average is recommended by U.S National Meteorologic Center
(NMC) for noise reduction of the ENSO. The blind forecasts of the filtered SOIRC1-6)
from different states for 2 years into the future from the date of forecast. The forecasted
values are then compared with the RCI1-6 that were from SSA. They are presented in

Figure 3. The lag © was selected as 5 as in the range of the first minimum of the
average mutual information (Moon et al, 1995) and it was based on experimentation to get
the best predictions (min predictive squared error). An embedding of m=6 was selected after
experimentation with various values in the range 1 to 9. This value corresponded to the one
that most commonly minimized LGCV(Locally Generalized Cross Validation). It was
searched over k1=30 to k2=150 nearest neighbors. Locally linear and quadratic fits were
considered. Typically a linear fit was selected. In Figure 3, Apr. 1995-Mar. 1997 (ypl) and
Apr. 1997-Mar. 1999 (yp2) blind forecasts of RC 1-6 (=5 and M=6) are presented, using
only data from Sep. 1932 to Mar. 1995 and from Sep. 1932 to Mar. 1999. The behaviors in
the forecast and RC1-6 filtered data are coincidental.
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Figure 2. Comparison of the filtered SOIRC1-6) with the SOL
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Figure 3. Apr. 1995-Mar. 1997 (ypl) and Apr. 1997-Mar. 1999
(yp2) blind forecasts of RC1-6 ( 7 =5 and M=6),

using only data from Sep 1932 to Mar. 1995 and
from Sep 1932 to Mar. 1999 respectively.

4. Conclusions

The utility of a locally weighted polynomial regression approach is demonstrated
through an application to nonparametric short term forecasts of the filtered Southern
Oscillation Index. Locally weighted polynomials consider the approximation of the target
function through a Taylor series expansion of the function in the neighborhood of the point
of estimate. This locally weighted polynomial algorithm is an useful tool for the SOI series
forecasting. However, the purpose of this paper was in exploring the utility of the local
polynomial regression approach for the time series prediction. Applications to various
hydrologic time series forecasting and spatial surface reconstruction are also in progress.
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