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Abstract

Computer simulations have played a central role in the development of our understanding of the
atomic scale processes involved in crystal growth. The assumptions underlying computer model-
ing will be discussed and our recent work on modeling of the kinetic formation of thermodynami-
cally unstable phases in alloys or mixtures will be reviewed. Our Monte Carlo computer
simulations have reproduced the experimental results on the rapid recrystallization of laser-melted
doped silicon. An analytical model for this phenomenon has been developed, and its applicability
to other materials will be discussed.

Introduction

The wide availability of extremely powerful computers has ushered in a new era in which simula-
tion is the preferred method for the modeling of physical processes. The development of our
understanding of the atomic scale processes involved in crystal growth, where computer simula-
tions have played a central role, is an example of the power of these methods. It has now become
apparent that computer simulations have not only been useful, but will continue to be essential for
this development.

Significant departures from the segregation effects predicted using equilibrium phase relation-
ships have been observed in many experimental studies of the rapid crystallization of semicon-
ductors and metal alloys. The most detailed experimental studies of the failure of the quasi-

gients (k-values) are found to increase dramatically with growth rate. Our extensive Monte €arlo
simulations have reproduced these experimental results, including both the growth rate and orien-
tation dependence of the segregation coefficient. Based on our simulations, we have developed an
analytical model which fits the simulation results and for the first time provides some predictive
capability for other alloy systems. The modeling suggests that it is the departure from equilib-:
rium, for example as measured by the undercooling, rather than the absolute growth rate which is
responsible for these effects. The experimental results and the Monte Carlo modeling imply that
there is a “kinetic” phase diagram which differs significantly from the equilibrium phase diagram.

Monte Carlo Simulations

Our computer simulations are based on the Monte Carlo scheme which has been so successful in
modeling the growth of pure materials [1-5], and which has played a major role in the develop-
ment of our present understanding of crystal growth processes. It incorporates implicitly the sur-
face roughening transition, the effects of step density and surface configuration on growth. The
Monte Carlo model used for the growth of pure materials has been modified only by the introduc-
tion of two species of atom in order to model alloy growth [6-9]. The assumptions about the inter-
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actions between the atoms is the same except that input data for both species are needed, and these
are based on the equilibrium thermodynamic properties of the alloy to be modeled. Although
these assumptions are quite simple, the predictions can be quite complex. The modeling has pro-
vided an extra link in developing an understanding of these complex phenomena.

In the conventional quasi-equilibrium model for crystal growth, the growth rate of a crystal is

written as: E B
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Here v, is a temperature dependent prefactor, L is the latent heat of fusion, E; and Eg are the inter-
nal energies of the liquid and solid respectively, T is the temperature in degrees Kelvin, Ty is the
melting point and k; is Boltzmann’s constant. This form assures that the growthrateis zeroat T =
Ty since E; - Eg = L. The internal energies should be replaced with enthalpies if that is appropri-
ate. This expression is based on the implicit thermodynamic assumption that all growth sites are
equivalent, and predicts that the growth rate is linear with undercooling near Ty.

An expression for the growth rate which is very similar in spirit can be written as:
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where the ¢’s are bond energies given by L = E; - Eg = (¢5 - $¢;)Z/2, where Z is the number of
nearest neighbors in the solid. The summation is over the nearest neighbors for each of the atoms
at the interface, and then the rates averaged over all the atoms at the interface. Eqn. 2 is conceptu-
ally very simple, and it is an embodiment of the classical Kossel-Stranski model for crystal
growth.

Eqns. 1 and 2 look similar, but the similarity is deceptive. For example, when L/kT), is large, the
surface will be smooth, and there will only be isolated adatoms on the surface of the crystal, so the
growth rate will depend on the rate of nucleation of new layers. This behavior is captured by Eqn.
2, but not by Eqn. 1. However, the summations in Eqn. 2 cannot be performed analytically except-
for special cases, because the distribution of nearest neighbors depends in detail on the configura-
tion of the atoms at the interface. The physics of Eqn. 2 can readily be treated by Monte Carlo
computer simulation where the configuration of each atom at the interface is stored in the com-
puter. For simulations of alloys, the ¢’s depend on both the species of the nearest neighbors as
well as whether they are in the solid or liquid. *

It is important to note that the Monte Carlo modeling incorporates the appropriate distribution of
sites depending on the surface roughness, but of course it does not predict the location of the sur-
face roughening transition. The location of the surface roughening transition must be scaled prop-
erly in the simulations [9].

Eqn. 1 has traditionally been corrected to fit experiment by multiplying it by a factor f which is the
fraction of surface sites which are active growth sites. For growth without defects, f can be evalu-
ated from simulations based on Eqn. 2. For rough surfaces, f varies somewhat with direction, but
is relatively independent of undercooling. For smooth surfaces, f incorporate temperature depen-
dence of the nucleation rate. For a smooth surface with steps created by dislocations, f depends on
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the density of growth sites generated by the dislocations, which often depends linearly on under-
cooling.

Growth on (111) Silicon

The difference between growth on rough and smooth interfaces is illustrated by the difference
between growth on the silicon (111) plane and the other planes of silicon. It is well known that the
(111) plane of silicon facets during growth from the melt, whereas the other planes do not. From
measurements of the interface undercooling in the {100] direction at very high growth rates [10]
and from molecular dynamics simulations [11] (which are in reasonable agreement) the interface
undercooling at Czochralski growth rates is estimated be about 3x10 degrees. The undercooling
will vary somewhat for other directions but by less than a factor of 2, and so the interface for all
these directions is very close to the equilibrium isotherm. But for the (111) plane, the undercool-
ing is much greater at the coolest part of the facet. We have estimated this undercooling from sim-
ulations based on Eqn. 2.

The Monte Carlo computer simulations were been performed using the crystal structure of sili-
con. In order to compare these results to the experimental data, it is necessary to correlate the
growth rate in the simulations with the experimental growth rate. This was done by comparing the
temperature dependence of the growth rate for the [100] direction in the simulations with molecu-
lar dynamics simulations [11] and with experimental measurements results [10].

At small undercoolings the growth rate normal to the (111) face of silicon is govemned by the
nucleation of new layers. Fig. 1 presents the results of simulations of the growth on the (111) face
as a function of time at several different temperatures. The growth is characterized by a time inter-
val of no growth, followed by a nucleation event which starts a new layer and results in the rapid
addition of a layer of atoms. The time interval between nucleation events increases with decreas-
ing undercooling. The time scale was compared directly with experiment by matching growth rate
in the [100] direction to the measured solidification rate in the same direction. Using the data from
this curve, the mean time between nucleation events can be determined. A nucleation rate per unit
area can be determined form this, since the area of the simulation surface is known. The logarithm
of the nucleation rate (in m2sec) versus the reciprocal of the undercooling is plotted in Fig. 2.
The straight line indicates nucleation controlled growth. From these data, the effective free energy
of the step riser per unit area can be calculated, and it is found to be about one tenth of specific
surface free energy of the flat, two dimensional surface. This result is not surprising, because the
step free energy is significantly reduced by the entropy associated with the roughening of the step.
The growth data fit a nucleation model, but the step free energy, which can readily be determined
from the simulations, must be used. Using a poly nuclear growth model [12] to extrapolate these
data to the growth conditions of Czochralski silicon results in an undercooling of the facet where
the nucleation of new layers occurs to be about 5 degrees. This compares with estimates based on
experiment of 1.5 degrees by Edwards [13], 5 degrees by Ciszek [14], and 9 degrees by Abe [15].

Growth of Doped Crystals and Alloys

The compositions, structure and properties of multi-component materials produced by phase
transformations which occur under conditions which are far from equilibrium are often quite dif-
ferent from those predicted by equilibrium thermodynamics. Quantitative data are available for
the dependence of the distribution coefficient (k-value) on growth rate during the very rapid
recrystallization of laser-melted, ion-implanted silicon [16-25], and more recently for aluminum
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alloys [26, 27]. The k-value in these experiments has been observed to increase by more than two
orders of magnitude over the equilibrium value. The growth rate dependence of the k-value is also
responsible for the so-called “facet effect” observed in the growth of semiconductor crystals [15,
28] which is an increased incorporation of most dopants at a faceted region of the interface during
growth at normal laboratory or production growth rates. Our recent computer modeling [6-9] has
reproduced all of the main features of this data, including the orientation dependence of the k-
value. In addition the modeling has provided a definitive explanation for the orientation depen-
dence.

We have reported [6] simulations for a “diffusionless” transformation, where the transformation
takes place by the motion of the interface, but the atoms do not move: their position is fixed on
lattice sites. These simulations correspond, for example, to a “shear’” or martensite-type transfor-
mation where the interface moves very rapidly, at rates approaching the speed of sound, so that the
atoms do not have sufficient time to diffuse as the transformation front passes. The growth rate in
these simulations was found to be zero on the T line for the alloy. On this line, the free energy of
the solid alloy is equal to the free energy of the liquid alloy with the same composition. This is
clearly the expected behavior for a diffusionless transformation since the kinetics of a diffusionless
transformation should depend on the difference between the free energies of the two phases, rather
than on the difference between the chemical potentials in the two phases of the species present. For
the diffusionless case, “freezing” or “melting” should be reversible at T,, depending on which
phase has the lower free energy. These results provided the first clear-cut confirmation of this ex-
pectation.

Data from simulations have been accumulated for a variety of different growth temperatures and
with various diffusion coefficients [8]. The thermodynamic properties of bismuth in silicon have
been used as a model system for many of these simulations since bismuth is a typical dopant in
silicon and these alloys have been studied extensively experimentally [17-20, 22, 23]. For the sim-
ulations, a growth temperature is chosen and a normalized growth rate is calculated from the net
number of atoms added to the crystal during the simulation. The growth rate dependence of the dis-
tribution coefficient has been found to depend on a dimensionless parameter B given by:

avAp
B = DkgT ©

where a is the interatomic spacing, v is the growth rate, Au is the overall driving force for the
crystallization process, and D is the diffusion coefficient. For a rough interface, the growth rate v
is proportional to the driving force, Al, so that the k-value for a rough interface depends on the
square of the growth rate, divided by the diffusion coefficient. The diffusion coefficient in the sim-
ulations was changed by a factor of 100 for various runs, but the data all coincide when plotted
against f.

B was first defined by Temkin [29] and derived from a crystallization time, Tcg, which is given by:
A akpT
v vAp “

Ter =

where A is a characteristic distance associated with fluctuations of the interface given by:
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B is the ratio of the diffusion jump time to the crystallization time, Tcez.

Analytical Model

Analytical expressions for the growth velocity have been developed [30] which closely match
Monte Carlo simulation data for doped silicon. They were derived based on the notion that surface
tension effects at the interface can transfer “driving force for crystallization” between species. The
analysis is best summarized by the equations for the net growth rate of the two components of a
binary alloy. For the A component:

1 —P) ApQ + PAF?
v, = VA[CL CAexp(( )k”,lf‘ . )] 6)
B
and similarly for the B component:
(1-P)AuQ + PAF°
Vg = VB[CL CBexp( kuTB Q)
B

The C’s are the concentrations of the A and B components in the solid, S, and liquid, L, at the
interface, Ap® is difference in chemical potential between the solid and the liquid for the corre-
sponding species, AF° is the free energy difference between the solid and the liquid, and k;T is
Boltzmann’s constant times the temperature. The superscript O on the chemical potential and free
energy differences indicates that the explicit concentration terms are not present.

For P =0, these equations reduce to the quasi-equilibrium model for alloy crystallization. Equilib-
rium occurs when v, = vy = 0, so that for P = 0, the equilibrium condition is given by the usual
equahty of chemical potentials in the two phases for each species: A, = 0 = Ay, and so these:
equations reduce to the usual thermodynamic conditions at equilibrium.

P approaches 1 when diffusion is very slow compared to the growth rate. P = 1 for dlﬂ’usmnless
growth (D = 0), in which case Ct = CS for both species because no redistribution occurs, and so

the term in the square brackets in Eqns. 6 and 7 is zero at the tcmperature T, which is defined as
the temperature where AF° = 0.

Eqns. 6 and 7 can thus be used to calculate a variety of phase diagrams, depending on the magni-
tude of P. P = 0 gives the equilibrium phase diagram, and for P = 1, the solidus and liquidus lines
collapse onto the T, line. Intermediate values of P give a range of “kinetic phase diagrams”
between these two limits, as illustrated in Fig. 3.

The quantity P is related to a “trapping probability”, and the Monte Carlo data indicate that p has
the form:

1

1_Pz1+A[38 ®)

where A is a constant and g = 0.5. A simple approximate expression for the distribution coeffi-
cient for component B can be derived from Eqns. 6 and 7:
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where k. is the equilibrium distribution coefficient.

Comparison with Experiment

The critical experiments to explore the solute trapping phenomenon were performed by laser melt-
ing of a thin layer on the surface of a silicon single crystal which had been ion implanted with a
dopant [16-25]. An area of a square centimeter is melted uniformly to a depth of a micron or so
with a single short pulse from a laser. The layer of liquid silicon then crystallizes very rapidly as
the heat is extracted into the underlying crystal. In a typical experiment on bismuth implanted into
silicon [20], the final distributions of bismuth could only be fitted w1th a k-value of 0.1, but the
equilibrium k-value is 7x10+,

Monte Carlo computer simulations have been performed using the crystal structure of silicon. The
growth rate in the simulations with the experimental growth rate were correlated as described
above for pure silicon. The agreement of the simulation results with experimental data of both
Baeri et al. [17, 20] and White et al. [18, 19] for the k-value for bismuth in (100) silicon as function
of growth rate as observed in laser annealing experiments is surprisingly good [7, 8]. The velocity
dependence of similar data of Aziz et al. [21] differs from both of the other sets of data as well as
from the simulation results, but the reason for this discrepancy is not clear at present.

It is well known that the k-value of dopants in silicon, as well as in compound semiconductors, is
orientation dependent. In order to investigate this, an extensive set of simulations were carried out
in three dimensions using the crystal structure of silicon, with various orientations of the interface
[9]. Nothing was changed in these simulations except the orientation of the growth front. The
growth rates for the simulations using the crystal structure of silicon were correlated to experimen-
tal growth rates as outlined above. The data agree well with experimental measurements of the ori-
entation dependence ‘of Bi mcorporatwn into laser-melted silicon wafers [9].

For growth which is controlled by the movement of steps, as is the case for a faceted interface such
as the (111) interface of silicon, the growth velocity is the product of the rate of addition of atoms
at kink sites, and the kink site density. (A kink site is an active growth site formed by a kink in a
step on the surface.) On smooth surfaces the kink sites (and steps) must move faster to maintain a
given growth velocity. It has been suggested [15] that differences in step velocity are responsible
for the “facet effect”. The normalized rate of addition of atoms at a kink site, u,, should be given
by u, = AWwkgT. This was confirmed by determining the kink site density as a function of temper-
ature and interface orientation in the simulations. In Fig. 4, simulation data are presented for the
growth rate dependence of the k-value for silicon doped with germanium, tin and bismuth. The
simulations were performed changing only the dopant-silicon bond energies to give the appropriate
equilibrium k-value. The dotted lines are Eqn. 9 with A = 8. The data for all three dopants fit with
the same value of A.

Conclusion

These comparisons between the experimental results and the simulation data suggest that the non-
equilibrium segregation behavior is being correctly modeled by the simulations. Furthermore, the
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analytical model outlined above is apparently capable of fitting both the simulation data and the
experimental data reasonably well using the same fitting parameter. This suggests that it can be
used for predicting non-equilibrium behavior.
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Figure Captions

Figure 1. Number of layers added as a function of time for Monte Carlo simulations of growth on
the (111) face of silicon. '

Figure 2. Nucleation rate vs. 1/AT for the data of Fig. 1.

Figure 3. Kinetic phase diagram calculated from Eqns. 6 and 7, based on an idealized bismuth-
silicon equilibrium phase diagram.

Figure 4. Simulation data for the growth rate dependence of the k-value for silicon doped with
germanium, tin and bismuth. The solid lines are Eqn. 9 with A = 8.
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