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. INTRODUCTION

_ﬂ

The power transformer is a major apparatus in a
power system, and its correct functioning is vital to
system operations. In order to minimize system
outages, many devices have evolved to monitor the
serviceability of power transformers. These devices
respond only to a severe power failure requiring
immediate removal of the transformer from service, in
which case, outages are inevitable. Thus, preventive
techniques for early detection faults to avoid outages
would be valuable.

A transformer is subject to two types of stresses,
electrical and thermal. The insulating materials within
the transformer can break down as a result of
stresses to yield gases. Overheating, corona and
arcing are three primary causes of fault related gases.
Principally, the fault related gases are hydrogen(Hy),
carbon monoxide(CO), carbon dioxide(COy),
methane(CHy), acetylene(C;H,), ethylene(C:Hs) and
ethane(CsHg). The dissolved gas analysis has received
worldwide recognition as an effective method for the
detection of incipient faults. Many diagnostic
criteria™¥ have been developed for the interpretation
of the dissolved gases. These methods would find the
relationship between the gases and the fault
conditions. However, criteria tend to vary from utility
to utility. Each method has limitations and none of
them has a firm mathematical description. Therefore,
transformer fault diagnosis is still in the heuristic
stage. For this reason, intelligent programming is a
suitable approach to implement in a such diagnostic
problem. Also, It can consistently diagnose incipient
fault conditions for the novice and in some cases may
provide further insight to the expert. Expert system

and neural network”'” have been used practically in
transformer fault diagnosis. Specially, artificial neural
network®™ method has been used for this purpose
since the hidden relationships between the fault types
and dissolved gases can be recognized by neural
network through training process.

In this paper, based on the interpretation of
dissolved gas analysis, a two-step(back propagation)
algorithm embedded neural network approach for
diagnosis of suspected transformer faults and their
severity is proposed. To demonstrate the feasibility of
the proposed approach, thousands - of power
transformer gas records from the Korea Electric
Power Corporation({fKEPCQO) are tested. It is found that
more appropriate fault types and fault severity can
support the maintenance personnels to increase the
performance of transformer fault diagnosis.

2. DISSOLVED GAS ANALYSIS

Fault gases in transformers are generally produced
by oil degradation and other insulating materials, e.q.,
cellulose and paper. Theoretically, if an incipient or
active fault is present, the individual dissolved gas
concentration, total combustible gas and cellulose
degradation are all significantly increased. Different
patterns of gases are generated due to different
intensities of energy dissipated by various faults.
Totally or partially dissolved into the oil, the gases
present in an oil sample make it possible to determine
the nature of fault by the gas types and their amount.
Therefore, the efforts of many researchers have been
made to create mmphﬁed diagnosis criteria such as
the gas ratio method" and the key gas method?”

2.1 GAS RATIO METHOD

Dornenberg, Rogers and IEC are the most
commonly used gas ratio methods. They employ the
relationships between gas contents. The key gas ppm
values are used in these methods to generate the
ratios between them. The ranges of the ratio are
assigned to different codes which determine the fault
types. Coding is based on experience and is always
under modification. For example, Table 1 is the
representative criteria suggested by the IEC guide
from the Rogers in gas ratio method for interpretation
of the gases. However, gas ratio methods are limited
in discerning problems when more than one type of
fault occurs simultaneously. In addition, for some
cases there is no diagnosis for a code as there are
more possible combinations of the code than there are
for the number of diagnosis.
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Table 1. IEC codes for the interpretation of dissolved

gas analysis
Range of gas ratio "
[ppm/ppm] CoHy/Cotly CH/H: Coly/CoHs
<01 0 1 0
01 ~ 10 1 0 0
10 ~ 30 1 2 1
>30 2 2 2
Code Fault type CAR/CHL | Cil/E | CH/Cills
0 No fault 0 0 0
Low energy
! partial discharge 0 1 0
P High energy
2 partial discharge ! ! 0
Low energy
3 arc discharge 1,2 0 12
High energy
4 arc_discharge ! 0 2
Thermal fault
5 (< 150T) 0 0 !
Thermal fault
6 | asc~a0v) 0 2 0
‘Thermal fault
7 | @ot~700t) 0 2 !
Thermal fault
8 (> 700T) 0 2 2

2.2 KEY GAS METHOD

Characteristics “Key Gases” have been used to
identify  particular fault types. The suggested
relationship between key gases and fault types is
summarized in Table 2. There are seven fault related
gases. The fault condition is indicated by the
excessive generation of these gases. For example,
KEPCO suggests criterion for dissolved gas analysis
as shown in Table 3, and uses to determine whether
a transformer is operating normally or not. Since this
method does not give the numerical correlation, the
diagnosis depends greatly on experience. Therefore,
this technique is simple yet labor intensive.

Table 2. Relationship between key gas and fault type

Key gas Fault type
D &Ny No fault related gases
Ha Corona(partial discharge)

CO & CO Cellulose insulation breakdown
CHs & CHs Low temperature oil breakdown
Cotlp Arcing(full discharge)

CHy High temperature cil breakdown

Table 3. Criteria of KEPCO for the interpretation of
dissolved gas analysis {Unit : ppm}
Gas Normal Alarm Fault
He < 400 400~800 > 800
CcO < 300 300~800 > 80
Cotly <X 20~100 > 100
CHy <250 20~750 > 750
CoHg <20 250~T50 > 0
Goty < 220 250~750 > 70
CO, < 4000 4000~7000 > 7000
TCG < 700 700~1800 > 1800
Increasing - 2 X0/year | = 100/month

* TCG(total combustible gas)
= Hy + CHy + Gt + GoHy + GoHs + CO

The fuzzy-set approach and expert system™™ ¥

have been wused to incorporate various rtules. A
knowledge base or a fuzzy membership function is
selected based on the past experience. The fault
diagnosis is a weighted conclusion drawn from a
number of data pertinent to the equipment. Its
reliability increases with the amount of information
available from previous tests and the degree of
experience of the laboratory performing the analysis.
Therefore, the required knowledge base could be large
and complex.

3. TWO-STEP NEURAL NETWORK

Very complex systems can be characterized with
very little explicit knowledge using neural networks.
The relationship between gas composition and
incipient fault condition is learned by the neural
network from actual experience(through training
samples). Obvious and not so obvious(hidden)
relationships are detected by the neural network and
used to develop its basis for interpretation of
dissolved gas data. Through training process, neural
network can reveal complex mechanism that may be
unknown to experts. Theoretically, a neural network
could represent any observable phenomenon.

In this paper, back propagation learning algon’thmml
consists of repeatedly passing the training set through
the neural network until its weights minimize the
output errors over the entire set. One is a neural
network for major fault type diagnosis, the other is a
neural network for fault severity diagnosis.

3.1 NEURAL NETWORK FOR MAJOR FAULT
TYPE DIAGNOSIS

Figure 1 presents the structure of neural network
for major fault type diagnosis. In this paper, five
input gases CoHz/CzH,, CHs/H,; CHy/CiHs CO, CO;
are chosen as input features. Several network
topologies are compared. The training and testing
results of these topologies are listed in Table 4. The
ten-fold cross-validation of this optimal is neural
network is computed to verify the accuracy.

Normat Portial Arcing

Overhagting  Collulose s Outputs

«— Weighted
connection

CaH2/C2He  CHe/H2  CeHe/Co2Hs [2e]

€02 «———— Iinputs

Figure 1. Structure of neural network for major fault
type diagnosis

3.2 NEURAL NETWORK FOR FAULT SEVERITY
DIAGNOSIS
Figure 2 presents the structure of neural network
for fault severity diagnosis. In this paper, the fault
severity level consists of normal, alarm, and fault.
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Figure 2. Structure of neural network for fault
severity diagnosis

Table 4. Training and testing results of neural network

Neural network Training | Training Ten~fold
Topology (hidden) | iteration error | cross-validation
T 5000 .01 5619
20-10-10 ypfe 0.018889 95.56[%]
Severity 4965 | 0.009998 92.44[%]

30-15

Severity 2744
Type 4158

0.009999
0.009997

91.461%])
93.70{%]

50

4. EXAMPLES OF DIAGNOSIS RESULTS

Two neural networks were constructed according to
the above evaluation. The results between the actual
inspection of the transformer and neural network
diagnosis match very well. Specially, in the case #4, it
is also quite possible to have a condition which
involves simultaneous overheating and paper and other
cellulose materials

Table 5. Data for case studies

Case #1 Case #2 | Case #3 Case #4
Ho 1398 26 13 165
CH4 53 558 33 93
C:H: 14 ND 76 0
CaHy 11 960 45 47
CoHg 12 365 49 34
CO 87 138 30 548
CQO; 709 940 942 8263
Severity | Fault Fault Alarm | Alarm
* ND : Not detected
Table 6. Results of case studies
Case #1| Case #2 [ Case #3| Case #4
Phenomenon | partial | overheating | arcing |overheating”
Normal 34.0000 0.0015 0.0007 0.0002
Partial
Arcing
Overheating
Cellulose
Severity

= p ¢ Paper and other cellulose materials involved

5. CONCLUSIONS

This paper presents an intelligent approach to

diagnose and detect incipient faults in power
transformers using dissolved gas analysis. The
proposed approach, a two-step neural network

classifier, diagnose the suspected transformer fault and
their severity. Several feature types have been
evaluated and several neural network topologies have
been considered. The two-step approach makes neural
network easier to train and more accurate in detecting
faults.

Good diagnostic accuracy is obtained with the
proposed system. To demonstrate the feasibility of the
proposed approach, thousands of power transformer
gas records from KEPCO are tested. It is found that
more appropriate fault types and fault severity can
support the maintenance personnels to increase the
performance of transformer fault diagnosis.
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