OBSERVATIONS OF HC₃N TOWARD THE SGR B2 MOLECULAR CLOUD ## Y. C. MINH AND HYUN-GOO KIM Korea Astronomy Observatory, Hwaam, Yusung, Taejon 305-348 We have observed the 10 – 9 transitions of HC₃N and its 13 C substitutes (H¹³CCCN, HC¹³CCN, and HCC¹³CN), and the vibrationally excited 12 – 11 (v_7 =1) HC₃N transition toward the Sgr B2 molecular cloud. The observed HC₃N emission shows an elongated shape around the Principal Cloud (\sim 4.5 pc in R.A. \times 7.4 pc in Decl.). The optically thin H¹³CCCN line peaks around the (N) core and we derive the total column density N(H¹³CCCN) = 4×10^3 cm⁻² at this position. Toward the 2' N cloud which shows the peculiar chemistry, the HC₃N lines show enhancements compared to the extended envelope. The shocks of the 2' N may have resulted in the enhancement of HC₃N. The hot component of HC₃N is strongly concentrated around the (N) core and its HPW is \sim 0.9 pc in diameter. We derive the lower limit of the abundance ratio N(HC₃N)/N(H₁₃CCCN) to be larger than 40 in most regions except the (M) and (N) cores. The fractionation processes of 13 C at this region may not be as effective as previously reported.