Fluorescence Processes of C₂H₆ in Hale-Bopp

Sang Joon Kim¹, and Harold Weaver²

¹Kyunghee University

²Johns Hopkins University

We developed line-by-line and time-dependent fluorescence model of the v_7 band of C_2H_6 , of which sub-branches had been detected in comets Hyakutake (C/1996 B2) (Mumma et al., 1996), and Hale-Bopp (C/1995 O1) (Weaver et al. 1998). We calculated fluorescence efficiency factors (g-factors) for the sub-branches of the v_7 band as a function of cometocentric distance. We found that the g-factors of the sub-branches (ex. rQ_0 and rQ_1) near nucleus are greater than those far from the nucleus approximately a factor of two. Since the lifetime of C_2H_6 is long (~91,000 seconds at a heliocentric distance of 1 AU), C_2H_6 molecules far from the nucleus should be close to fluorescent equilibrium. We analyzed a v_7 band spectrum of Hale-Bopp obtained at the IRTF with the CSHELL on March 2, 1997. Within a square aperture of 1" x 2" at a geocentric distance of 1.5 AU, we found that the most C_2H_6 molecules are not in the fluorescent equilibrium condition. We constructed synthetic spectra of the v_7 band of C_2H_6 within the aperture in order to compare the model spectra with the observation. We discuss dominant processes of the fluorescence and implications of the fluorescence processes.

References

Mumma, M.J., M.A. DiSanti, N.D. Russo, M. Fomenkova, K.

Magee-Sauer, C.D. Kaminski, and D.X. Xie. 1996. Science, 272, 1310-1314.

Weaver, H.A., T.Y. Brooke, G. Chin, S.J. Kim, D.

Bockelée-Morvan, and J.K. Davies. 1998. Accepted for publication in the *Proceeding of the First Intermediated Conference of Con*

the First International Conference on Comet,

Tenerife, Canary Island, Feb. 2-5, 1998.