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Abstract

A mathematical model is developed to describe the
relationship between the manipulated variables (e.g. jacket
inlet temperature and feed flow rate) and the important
qualities (e.g. conversion and weight average molecular
weight (Mw)) in a continuous polymerization reactor. The
subspace-based identification method for Wiener model is
used to retrieve from the discrete sample data the accurate
information about both the structure and initial parameter
estimates for iterative parameter optimization methods. The
comparison of the output of the identified Wiener model with
the outputs of a non-linear plant model shows a fairly
satisfactory degree of accordance.

Intrdduction

The design of control system frequently requires the accurate
mode] describing the nonlinear dynamics. Such models range
from general functional series-based models to models
obtained from linear system identification utilizing the
Hammerstein model [12,13].

A Wiener system is given by the cascade interconnection
of a linear time-invariant system with a static nonlinearity
and is particularly useful in representing nonlinearities of a
process without introducing the complications associated
with general nonlinear operators. This model corresponds to
a process with linear dynamics but a nonlinear gain, and can
adequately represent many of the nonlinearities commonly
encountered in industrial processes such as distillation and
pH neutralization [6]. Recently, Verheagen (1998) applied
the Wiener model to identification of the temperature-product
quality relation in a multi-component distillation column and
devised more attractive computational scheme, e.g., having
lower computational complexity and higher accuracy [8].

The identification problem for the Wiener model can be
formulated as follows : given input/output data sequences,
find consistent estimates of the linear part of the model and
of the nonlinear mapping. In the literature, the problem of
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Wiener model identification has been mostly analyzed in the
prediction error framework [12,13].

More recently, however, Westwick and Verhaegen [11]
proposed subspace based approach making use of the PI
MOESP (Past Input MIMO Output-Error State Space)
method for the estimation of the system matrices of the linear
part ; the PI MOSEP method is the one of subspace-based
state space system identification (4SID) methods which have
been recently developed and attracted an increasing attention
[9,10]. Among the main advantages of such methods we
mention the ability to deal with MIMO identification in a
straightforward way and the ease for the non-specialist to use
due to the small number of parameters which have to be
chosen by the user. Also, unlike the case of prediction error
methods (PEMs), 4SID algorithms do not require non-linear
iterations in the parameter space but are based on
computational tools such as the QR factorization and the
singular value decomposition (SVD), which make them
intrinsically robust from a numerical point of view. Finally,
the subspace-based state-space system identification method
provides an accurate state-space model for multivariable
linear system directly from the input-output data. On the
basis of these results, we obtain the model structure and the
initial parameter estimates of the Wiener model [4].

In general, the modeling and control of polymerization
reactors are difficult tasks for several reasons. First, these
reactors often exhibit highly interactive nonlinear dynamic
behavior. For example the existence of steady-state
multiplicities, parametric sensitivity, and limit cycles for the
free-radical polymerization in a continuous stirred-tank
reactors (CSTRs) has been shown theoretically and
experimentally by Schmidt ez al. [7]. A second challenge is
that the first-principles model for a polymerization reactor
may contain a large number of kinetic parameters. Because
obtaining these parameters from lab scale test and pilot-plant
work can be a very time-consuming endeavor and in addition,
there may be processes for which a full understanding of the
kinetic mechanism is not available, it may be advantageous to
use a model structure whose parameters may be identified



from input-output data [5].
Continuous Polymerization Reactor Model

Here, we consider a continuous solution polymerization
reactor system of methlymethacrylate (MMA) using
benzoylperoxide (BPO) as the initiator and ethlyacetate (EA)
as the solvent. The reaction kinetics are assumed to follow
the free-radical polymerization mechanism including chain-
transfer reactions to both solvent and monomer. The free-
radical polymerization mechanism is summarized in Table 1.
The kinetic parameters are determined using the parameter
estimation techniques and are listed in Table 2 [1]. The gel
effect is taken into account by the empirical correlations for
the gel and glass effects proposed by Schmidt and Ray [7].
The detailed correlations and the other physical properties are
represented in Ahn et al. [2].

We can derive the differential equations from the mass
balances of various species in a polymerization reactor [2].

div)

=g d,—-qgl -k, IV 1

a drly—4q d )
d(MV

(dt ) _ g M, = gM =2 fk g1V = (K, + ki )MGV (2)
d(sv ~
(dt ) = 4,5, ~gS ~kySGoV €))
ﬂ;d;ﬂ = —qGo + 2k IV —k,Go*V @)
a(G,V)
—— L= —qG, +2/k IV +k MGV - k,G,G,V

7 qG; +2/ky pMGg ] (5)

+ (klrmM + kIryS)(GO - GI )V

d(G,V)
—l = —qG, + 2 [k IV + k M (Gy +2GV

dt qU, fkd 4 ( 0 1) (6)

- kIGOGZ V+ (klrmM + kImS)(GO - GZ )

Table 1 Free-Radical Polymerization Mechanism
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Table 2 Rate Constants used in the Model for MMA.
Polymerization

Rate Constants Expression
k{s™] 1.25x10"%exp(-35473/RT)
k,o[l/mol/s] 2.94x10%xp(-5656/RT)
ke[l/mol/s] 5.20x10%xp(-1394/RT)
Kio/kio 1.83x10”exp(-44467/RT)
Kymll/mol/s] 9.32x10%xp(-13971/RT)
Kk, [l/mol/s] 8.79x10%exp(-42.6/RT)

R : Ideal gas constant
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where I, M, and S represent the concentrations of initiator,
monomer and solvent, respectively, and subscript f denotes
the feed condition. Also g, is the feed flow rate and g is the
overflow rate which makes the reactor level constant. The
symbol f indicates the initiator efficiency. In addition, G, and
F, denotes the k-th moments of living and dead polymer
concentrations, respectively, and are defined as follows :

G, = Sn*R, (1),

n=}l

F, =Yn*P,@),

n=l

k=0,1,2 (10)

k=0,1,2 (11)

Once the G, and F, are known, the weight average
molecular weight (Mw) can be determined by the following
formula :

X(Gz“‘Fz)
. (G +F)

Mw= Mm (12)

where Mm is the molecular weight of monomer.

We also consider the energy balances for reactor and jacket,
and use the equations for the volume change of the reaction
mixture to calculate g [1].

Appilication of the Systematic Procedure to Identify
Wiener System
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Wiener System Identification Problem

We shall assume that the system to be identified may be
described by the following Linear Time-Invariant (LTI) state
space model :

X = Axy + Buy_y (13)

Yin =Cxy + Duy_y

where x, € R" is the state vector, u, € R" is the input
vector, Yy € R’ is the output vector and d is the dead-time.

The measurement equation of the output is given by the
expression :

(14)

zp = fx) + v,

where z, e R’ is the observed output, f ():R >R isa

non-linear vector function and v, is a zero-mean stochastic

process of arbitrary color.
The Wiener system identification problem is now stated as :

Let the following data sequence of input/output (i/o0) data for
the system (13-14) be given by

[ Uj Ujn Bjin-1 ]

[?/ Z j+

(15)

Z j+N-l

and assume that the input sequence {uk} is sufficiently
persistently exciting as defined in Verhaegen (1993) and
statistically independent from the perturbation {vk }, the task
is to find (a) the order of and (b) a statistically consistent
estimate of the LTI state space model and the initial
conditions (up to a similarity transformation), and (c) the
dead-time d as well as () an estimate of f(-) [8,9,10].

Data generating from mathematical model

For the identification of a continuous polymerization rector,
we use the input-output data obtained from numerical
simulations of the nonlinear model for the continuous
polymerization reactor. In general, the most common types of
excitation signals used for collection of identification data are

Vi

Vi

[A,B,C,D] AQ > D>z

Figure 1. A schematic representation of the Wiener model.
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step, impulse and Pseudo Random Binary Sequences (PRBS).
Step and impulse responses have been used in the
development of linear Single-Input/Single-Output (SISO)
transfer functions, but these signals are not applicable to
Multiple-Input  /Multiple-Output (MIMO) identification
because they do not adequately excite the process and thus
lead to ill-conditioned data matrices. On the other hand,
PRBS are well suited for MIMO identification [3].

In this study, we use the inlet temperature of the reactor
jacket T, (from 75°C to 80°C) and the feed flow rate g, (from
5 mil/min to 15 ml/min) as the test inputs. For the purpose of
increasing the accuracy of identified model, 5 sets of PRBS
inputs of T}, and g respectively, are used for generating i/o
data and 5 sets of outputs (conversion and Mw) are obtained.
In Figure 2, a set of input/output data are shown. In the upper
two diagrams of Figure 2, the chance of the signal changing
level of PRBS inputs is 0.2. The outputs in the lower two
diagrams of Figure 2, start from the steady state values
(Conversion = 0.1158, Mw = 169.592) which calculated in
advance.

Structure Selection using P MOSEP

Identification is executed with reference to the systematic
procedure to identify Wiener system proposed by Verheagen
[8]. In order to perform the first step of this strategy in a
systematic manner, one needs to evaluate the model accuracy
measure for all different combinations of feasible model
orders and dead-times. For this purpose we use the Variance
Accounted For (VAF) index, which is defined as
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Figure 2. Input/output data from the mathematical
model equations.
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The range of the VAF index is between —o and 100%.
Instead of this brute force manner, we use subspace
identification to get some insight about the order of the
underlying system. We first identify the LTI part of the
Wiener system, using the Pl (Past Input) subspace
identification scheme as if the nonlinearities were not present
and determine the order of the LTI system and the dead-time.
This is attractive when no prior information is available. To
get some insight into the order of the system to be identified
with subspace identification schemes only (a) an
overestimate of the order of the system (taken equal to 10)
and (b) the specification of the dead-time are required (taken
equal to 0 minute) [9,10,11].

Since the 5 sets of i/o data are used for identification of the
system successively, the system order can be estimated more
accurately as the number of data set used increases. Singular
values obtained by the PI subspace identification scheme are
shown in Figure 3. We observe a gap between the second and
third singular values, indicating that the underlying system is
of order 2. Fixing the order of the LTI system to 2, we can
evaluate the VAF for different dead-times in the range
between 1 and 4 minutes for input. The result shows that 1
minute yields the best model predictions. Though we could
use this information to specify bounds on the dead time in a
parametric optimization problem where this is another
variable to optimize, we fix the dead time to 1 minute in
subsequent calculations. In the lower two diagrams of Figure
4, we show the output of LTI system by Pl scheme and the
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Figure 3. Singular values obtained by using 5 sets of

data.
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Figure 4. Comparison between the outputs of LTI
system and the nonlinear outputs.

output of the nonlinear part of the system. The VAF index of
this estimate is §9.7589% and 93.1746 % for conversion and
Mw, respectively. We plot the computed output of the
selected LTI system p, versus the actual nonlinear output in
Figure 5. The actual nonlinear conversion, as displayed by
the symbol x in this figure, shows a very complicated aspect
because it depends on the conversion and Mw of LTI system.
A MIMO static nonlinear function between the LTI outputs
and the measured outputs is estimated on the basis of
Tchebychev polynomials as follows :

J+N-1 .
min 2 [z —@G)| (17)
Vi k=j

where Tchebychev polynomials are represented by the
expression :

A ”l nj .
O(yy) = Zé)}’iy k =[ch CDZ]I (18)
i
O (P = 7o+ +7|,2f’k.2)+(72,1.5’k,12 (19)

~ 2 ~ A~
+¥o 0 Vk2 )t s Vi +752760™)

Before estimating the coefficients of polynomials the input
signal of the function is shifted and scaled to fall within the
region [-1, 1]. The estimate of the static nonlinearity, depicted
by the dotted line in Figure 5, shows a very nonlinear
relationship. Since actual conversion correlates with M, as
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Estimated Static Nonlinearity

conwerision of static nonlinear output
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Figure 5. The output of LTI system vs the true
and the estimated nonlinear output [conversion]

well as with conversion of LTI system, conversion of LTI
system can have more than one corresponding value of actual
nonlinear output. The output estimate by MIMO static
nonlinear function is plotted in Figure 6. The VAF indices for
conversion and Mw are 91.2580 % and 93.2750 %,
respectively. The VAF indices of this estimate are improved
compared to Pl MOSEP scheme.

We can summarize from the initial structure selection step
that the model to be improved in the subsequent steps of the
systematic procedure should be a second order model with
dead-time equal to | minute with two inputs.

Model Improvement Using Full Parameter Optimization
Since the input used for identification is not Gaussian, Pi-
MOSEP may give biased estimate of the linear part.
Therefore, we now need te use a nonlinear optimization
technique to find the right model. We parameterize the
Wiener system as Egs. (20) and (21).

comersion.
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Figure 6. Comparison between the true outputs and the
outputs of the identified Wiener model based on only
Tchebychev polynomial.

505

-a 1 0
—a, 0 0
X (ay) = : X (ay) 20)
-a, 4 0 1
a, 0 0 J
+ Bu(k)
wa)y=[1, 0 - 0l%(a,) @1)

Let 6 denote the parameters that specify the linear time-
invariant system, i.e. the parameters a,, those of the matrix B

and the initial conditions. If (&) represents the predicted

output based on the coefficients &, then we can define the
following full parameter optimization problem:

JtN-1 " .
minmin 2, [z - 27:%: @) (22)
&y k=j i=0

The principle of separable least squares can reformulate the
above optimization problem in terms of & only. From the
previous step we can specify constraints on the parameter
values providing the iterative optimization with good initial
estimates. The output of the model that resulted from solving
the optimization problem (22) is plotted in Figure 7. The VAF
indices are 93.8488 % and 97.7000 %. We observe that the
estimation of Wiener system is improved compared to the
results of Figure 7. The relationship between the outputs of
the linear model and the actual nonlinear outputs is shown in
Figure 8. The different scale along the x-axis, compared to
Figure 5, and the split nonlinearity are due to the nature in the
model description of Wiener model. Now the nature of static
nonlinearity is even more transparent.
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Figure 7. Comparison between the true outputs and the
outputs of the identified Wiener model using iterative
optimization based on tchebychev polynomial.
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Figure 8. The scaled output of LTI system vs. the true
and the estimated nonlinear output using full
parameter optimization [conversion].

Concluding Remarks

In this paper, we applied a systematic procedure to identify
MIMO Wiener system to the identification of the relationship
between the manipulated variables such as jacket inlet
temperature and feed flow rate and the important qualities
suc uous
polymerization reactor. ihe Iirst step oI subspace-based
Wiener model identification method only requires very little
and coarse a priori knowledge about the model structure. It is
shown that this feature allows the user to confirm and
improve his prior knowledge about the model structure and
supplies the iterative parameter optimization methods with
reliable initial estimates. As the systematic procedure
proceeds, the estimation of the model is improved (which is
shown in the Table 3). Finally, we could obtain the very
accurate MIMO Wiener model without the exhaustive “trial-
and-error” search procedure.

Table 3. Comparison of VAF in each systematic step

VAF(%)
Step -
Conversion M,
PI scheme 89.7589 93.1746
Tchebychev 91.2810 93.2750
polynomial
Full parameter 93.8488 97.7000
optimization
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