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Abstracts

We propose robust MILP model for scheduling and design
of multiproduct batch processes in this paper. Recent
stochastic modeling approaches considering uncertainty
have mainly focused on maximization of expected NPV.
Robust model concept is applied to generate solution
spectrum in which we can select the best solution based on
tradeoff between robustness measure and expected NPV.
Robustness measure is represented as penalty term in the
objective function, which is Upper Partial Mean of NPV,
We can quantify solution robustness by this penalty term
and maintain model as MILP form to be computationally
efficient. An example illustrates the effectiveness of the
proposed model. In many cases sufficient robustness can

be guaranteed through a little reduction of expected NPV,

1. Introduction

In recent years we have witnessed an increased interest in
the areas of modeling uncertainties in scheduling, design
and planning of chemical processes. Uncertain parameters
are frequently assumed to be constant scheduling, design
and planning of chemical processes for simplicity. But
real-world situations are characterized by high degree of
uncertainty and we can not cope with future uncertainties

such as change in product demands and variations of
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processing parameter variations using deterministic model.
Many researchers have proposed models considering
uncertainties[1]-[6],[8]. Ierapetritou and Pistikopoulos[1]
prof)osed a stochastic scheduling and design model to deal
with uncertain product demands and processing
parameters. Gaussian quadrature approximation was used
to calculate expected NPV with the continuous probability
function of product demands. Liu and Sahinidis[2]
proposed a stochastic planning model with decomposition
algorithm. They represented uncertain product demands as
discrete random parameters and applied Monte Carlo
sampling method. Harding and Floudas[3] proposed a
stochastic design model and they applied BB algorithm
to obtain the global optimal solution to NLP problem.
Models proposed by above-mentioned three papers could
include the uncertain features scheduling, design and
planning of chemical processes but objective functions
took the form of expected NPV.

In this paper, robustness means that the optimal model
solution is near optimal for any realization of the demand
scenarios. Markowitz[4] proposed a robust optimization
algorithm and Malcolm and Zenios[5] developed a robust
optimization model for the expansion of power capacity
under uncertain load forecasts. Bok et al.[6] proposed
robust investment model for capacity expansion of

chemical processing networks.

The objective of this paper is to propose a robust MILP



model for scheduling and design of multiproduct batch
processes. Model considering scheduling in the stage of
design can give higher NPV than the design model with
only UIS policy since the overestimation of equipment’s
size can be avoided by efficient scheduling algorithms.
Voudouris and Grossmann[7] proposed an efficient
scheduling and design model for multiproduct batch
processes but a serious shortcoming of their model was its
deterministic nature. We propose a robust model to cope
with future uncertainties based on their model{7]. Basic
model structure has two-stage stochastic programming
framework. Traditional two-stage stochastic optimization
model minimizes the sum of the equipment costs in the
first stage and the expected operating cost in the second
stage. A potential limitation of this approach is that it does
not account for the variability of the second stage costs
and might lead to solutions where the actual second stage
costs are unacceptably high. We use a robustness measure
that penalizes second stage costs that are above the
expected cost. We can generate solution spectrum by
progressively increasing penalty parameter A in the
robust model. We can determine the proper solution
considering tradeoff between robustness and expected
NPV.

Subrahmanyam et al.[8] proposed a design model of batch
plants and also assumed the demand scenario is a
particular occurrence or realization of the uncertainty
parameter with probability. Scenario based approaches
have been prevailed in considering uncertainties{5,6]. Our
model assumes that product demands are uncertain and
can be predicted as realizable scenarios with their

probabilities.

2. Problem Description

The specific features addressed in this paper are as

follows:

1. Multiproduct plant
2. Single Product Campaign
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3. Zero-wait production policy

Given

1. Production paths and processing times
2. Size factors of each units

3. Product demands and design horizon

Determine
1. Design problem: Equipment sizes

2. Scheduling problem: Production schedule

3. Mathematical Model

The robust MILP model for scheduling and design

problem is as follows:
Maximize
(a) Objective function:

= Expected NPV

- Penalty term on variability

D= w NPV’ - LY w'A’ (1)
p P
subject to
(b) Deterministic NPV evaluation:
NPV = Revenue from selling the products
- First stage plant cost
" - Second stage operating cost
NPV’ = R’ (1—tx)(prcoef)
—Pc+(Pc! Ny)tx(prcoef)
-0c”(1—-tx)(prcoef) Vp )

In eq.(2) tx is the tax rate, Ny is the expected life of the
plant in years, R" is the revenue from selling the products
and prcoef is the present value coefficient with which the

future profits are projected to the present. This coeffcient
is defined as prcoef ={(1+in)" —1)/(in(1+in)")}

where in represents the interest rate.



(c) Positive deviation of p scenario’s NPV from the
expected NPV:

A2 (Z w”NPV”J— NPV’ Vp 3)
14

A" >0 Vp )
Traditional method of representing the variability is using
the variance but we use the upper partial mean as our
measure of variability of NVPs and it can be justified as
follows[9]:

1) Variance is a symmetric risk measure, penalizing costs
both above and below the expected NPVs equally. But in
chemical processes, Scenarios whose NPV is above the

expected NPV should not be penalized so we propose

asymmetric variability measure.

2) Using A”, we can generate MILP model to solve

computationally easy.

(d) Plant cost and operating cost:

Pc= 225,-%- )
j s
&, =a;b.p ©)
P — Qi P _TP
0c” =¥ | (P’ ~T7)
+mint2 ord(sv)r,” Vp N

The plant cost Pc is the capital investment required for
equipment. The cycle operating cost Oc?”are calculated
by eq.(7) where the first summation is the inventory cost
and the second term is the setup cost paid every time the

optimal schedule is repeated.

(e) Scheduling and design related constraints:
S; O ..
n? ZZ 1= e,/ Vi j,p 8)
K vj.\'H

ejxp SHyj\ vjassp (9)

457

P’ = Zej_‘," Vi, p (10)
Hg! =P’Q" Vi,p (11)
> NB'=n"  Vip (12)
k

> NB"=n’ Vk,p (13)
I’ =t + (2 NF,"Slk,;))

k

J = last machine Vi, p (14)
z(ni”tij +(, NP,.k”Slk,.,q.)) <P’" Vjp (5

i k

NP/ =n"—-1 Vi,p (16)
H= ZOrd(sv)ﬁw” Vp an
YBr=P" Vp (18)
Br<Hr? Vsu,p 19)
(f) Integrality constraints:
Y y=1VYj 0)
>r,=1Vp @1
(g) Variable conditions:
Vi = binary Vj,s (22)
r,” =binary Vsv,p (23)
n'” =integer Vi, p (24)
g’, NP, P’ 20 (25)

In the model the objective function is defined as expected
NPV penalized by Upper Partial Mean (UPM) of each
scenario’s NPVs. Penalty term plays a key role of limiting
the variability of the second operating costs, which
represents the solution robustness of the model. Penalty
parameter A enhances solution robustness as it increases.
Our objective is to maximize the expected NPV with the

variability as small as possible. By settling A very large,



it is possible to make UPM near zero but resulting in
substantial loss of expected NPV. Solution spectrum can
be obtained by progressively enforcing robustness. We can
determine one solution among the alternative solution
spectrum based on tradeoff between robustness and
expected NPV. We will illustrate the effectiveness of the

proposed model through an example.
4, Example

In order to illustrate the effectiveness of the proposed
model, consider an example taken from Grossmann and
Sargent(1979) for the design of a batch plant that produces
two products using three stages with one equipment per
stage. In this example only the demands are considered to
be uncertain parameters. 3 scenarios are taken to consider
the uncertain product demands. The data for this example
are shown in Tables 1-3. It is assumed that the
equipements are only available in the following set of
discrete values {100, 200, 400, 800}. Table 4 shows
solutions obtained by deterministic model. Design
solutions for each scenario are different from one another
and one particular solution may give rise to infeasibility
for realization of other scenario. Table 5 shows solution
spectrum obtained by the proposed robust model.
Expected NPV of the robust model is lower than that of
the deterministic model because the robust solution should
consider all the realizable demand scenarios. But we can
cope with the future demand uncertainty using robust
solution that is near optimal for any demand scenario.

Solution robustness is manipulated by penalty parameter
A in the model. A represents conservativeness to the
risk of future condition change. A spectrum of solution is
generated by progressively enhancing robustness. As A
increases decision makers require larger volume of
equipment leading to decrease in the expected NPV.
Scheduling and design solution changes as A increases
and UPM decreases to near zero as shown in Table §.
Figure 1 shows the expected NPV and the plant cost vs.
UPM. As the UPM increases, the plant cost decreases
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therefore the expected NPV is decreasing. We can notice
the tradeoff between the expected NPV and UPM
representing robustness of the solution. Figure 2 shows the
percentage reduction in the UPM corresponding to the
percentage loss in the expected NPV from the stochastic
programming solution. From this plot it can be seen that
only 2.18% of expected NPV should be sacrificed to
achieve about 98% reduction in the UPM. So we can
guarantee a substantial improvement of robustness by a
little loss of the expected NPV. A spectrum of solutions
obtained by the robust model cannot be obtained by the
stochastic model in which the objective function is only
the expected NPV.

Note the tradeoff between the expected NPV and
robustness. The most important role of the robust model is
the generation of spectrum of solution with tradeoff plot as
shown in Figure 2. The decision maker can determine a

solution according to his preference to the future risk.

5. Conclusions

We proposed a robust MILP model for scheduling and
design of mulitiproduct batch processes. The proposed
model coped with uncertain future demands and was
verified by an application example. We constructed MILP
model by defining positive deviation variable that could
represent robustness concept appropriately with keeping
linearity of the model for the computational efficiency.
The example illustrated the generation of solution
spectrum in terms of tradeoff between the expected NPV
and robustness. The modeling method and the solution
analysis with the robustness concept are expected to be
applied to other chemical process optimization problems
in which tradeoff issues exist. Uncertainty of processing
parameters such as size factors and processing times can
be considered easily by modifying the proposed robust

model.
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Nomenclature

Indices

i, k=index of product

j=index of processing equipment
p=index of scenario

s=index of discrete sizes for k

sv=index of number of production cycles

Parameters

é, =cost of size s for potential equipment j

H = time horizon in which the demand has to be satisfied
mint = cost in dollars per repetition
.7 = market demand for product i in scenario p

S, = size factor of potential equipment j for product i

Stky; = idle time(slack) imposed in equipment j when
product k follows product i

t; = processing time of product i at equipment j

~

i = standard volume of size s for potential equipment j

w? = probability of scenario p

A = penalty parameter

u, = inventory cost per unit mass of inventory of product /
per unit time

a; =cost coefficient for equipment j

B, = cost exponent for equipment j

Variables

A’ = positive deviation from the expected NPV in
scenario p

n,” = number of batches of product i during a production
cycle

NP, = number of occurrences of the pair i-k in a SPC
schedule during a production cycle

Oc” = operating cost in scenario p

Pc = plant cost

P? =length of production cycle in scenario p
g,” = amount of product i during one production cycle in

scenario p
P = binary variable of repetition sv in scenario p

T
T,” = length of time which is dedicated to the production

of product i
Vi = binary variable of size s at equipment j



Table 1. Data for Example

Size factor, S; Processing time, ;
Product Stagel Stage?2 Stage3 Stagel Stage2 Stage3
1 2 3 4 8 20 8
2 4 6 3 16 4 4

Table 2. Cost data for Example

Plant cost coefficient

Stage o B product Price
1 10 0.6 1 55
2 10 0.6 2 7.0
3 10 0.6
Table 3. Demands and Probability data for Example
Scenario - Product > Probability
1 1500 1500 0.3
2 2000 1000 0.5
3 2500 700 0.2

Table 4. Solution of deterministic model for Example

Realizable Determined Expected NPV(§)

scenario Sizes Scenario 1 Scenario 2 Scenario 3 |devzatzon’
1 {200,400,200} 61930 Infeasible Infeasible 1480
2 {200,200,400} Infeasible 59260 Infeasible 1190
3 {200,400,400} 61841 59171 61205 755
Table 5. Solution of Robust model for Example
Penalty Determined Scheduling solution Expected b AP
parameter, Sizes Cycle time Number of repeat NPV($) ; w
A Snl Sn2 Sn3 Snl Sn2 Sn3
0 {200,400,400} 32.258 32.258 32.258 31 31 31 60379 603
1 {200,400,400} 32.258 32.258 32.258 31 31 31 60379 603
2 {200,400,400} 50 32.258 71.429 20 31 14 60013 421
3 {200,400,400} 125 32.258 100 8 31 10 59250 39.6
4 {200,400,400} 125 32.258 100 8 31 10 59250 39.6
5 {200,400,400} 125 32.258 125 8 31 8 59186 24.6
6 {200,400,400} 125 32.258 125 8 31 8 59186 24.6
7 {200,400,400} 125 32.258 125 8 31 8 59186 24.6
8 {400,400,400} 125 32.258 125 8 31 8 59186 24.6
9 {400,400,400} 111.111 32.258 125 9 31 8 59065 10.3
10 {400,400,400} 111.111 32.258 125 9 31 8 59065 10.3
16 {400,400,400} 111.111 32.258 125 9 31 8 59065 10.3
20 {400,400,400) 111.111 32.258 125 9 31 8 59065 10.3
61000 1600 100
60000 v,.jW s = 80
> I 5
& 59000 ; = £ 601
o L 1200 = 5
(5] o =
g‘ 58000 a é 40 1
Q. Plant cost [}
S s7000 -XO————:———( 1000 e 20 J
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56000 . . . . . L 800 0 - .
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UPM % reduction in NPV
Figure 1. Expected NPV and plant cost for UPM Figure 2. Cost of robustness
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