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Abstract

The previously developed control design methodol-
ogy, EALQR(Eigenstructure Assignment/LQR), has bet-
ter performance than that of conventional LQR or eigen-
structure assignment. But it has a constraint for the
weigting matrix in LQR, that is the weighting matrix
could be indefinite for high-order systems. In this paper,
the effects of the indefinite weighting matrix in EALQR
on the frequency domain properties are analyzed. The
robustness criterion and quantitative frequency domain
properties are also presented. Finally, the frequency do-
main properties of EALQR has been analyzed by applying
to a flight control system design example.

1. Introduction

In general, it is well known that the optimal LQR
solution has some very strong robustness properties; in
particular, at each channel of the plant input there is
an infinite increasing gain margin and a phase margin
of plus or minus 60 degrees[1]. Several methods for de-
signing steady-state continuous regulators have been dis-
cussed. The plant and weighting matrices are assumed
to be time-invariant, with (A4, B) reachable and (4,/Q)
obserable{2]. LQR design problem is defined as a prob-
lem of determination of the design parameters, i.e., state
weighting matrix @ and control input weighting matrix R
in the algebraic Riccati equation. The closed-loop eigen-
structure(eigenvalues and eigenvectors) is determined by
the designed matrices @ and R.

Eigenstructure assignment(3-6] is well-suited for incor-
porating the classical specifications on damping, settling
time, and mode or disturbance decoupling into a modern
multivariable control framework. Eigenstructure assign-
ment provides the advantage of allowing great flexibility
in shaping closed-loop system responses by allowing spec-
ification of closed-loop eigenvalues and eigenvectors, but
has disadvantage that stability-robustness is not guaran-
teed. Since there the same relation between EA with LQR,
characteristics and LQR. design with EA, these become
known as the EALQR problem.

Some investigators deal with LQR control methodol-

429

ogy with pole assignment[7-11]. Recently LQR control
methodology with eigenstructure assignment has devel-
oped. In 1998, Choi and Seo[12] introduced EALQR(LQR
Design with Eigenstructure Assignment Capability) as a
kind of LQR design methodology. The EALQR has the
advantages of the existing LQR and eigenstructure assign-
ment methods. The method of the transformation matrix
via block controller is utilized to develop the scheme. The
EALQR guarantees that the desired eigenvalues are as-
signed exactly and the corresponding desired eigenvectors
are assigned in the least square sense according to the con-
ditions of the given system. In addition, EALQR also has
more freedom with nondiagonal element for the weighting
matrix. But, EALQR could have a state weighting matrix
@ with some negative eigenvalues for high-order systems.

The standard LQR has been assumed that the state
weighting matrix @ is postive semidefinite symmetric and
input weighting matrix R is postive definite symmetric.
The definiteness of the weighting matrices are closely re-
lated to the robustness property of the given system. But,
Molinari[7], Ohta and Kakunuma8], and Al-sumi and
Stevens[9] indicated that indefinite Q is needed if we want
to design an LQR that has a capability of assigning eigen-
values. Since indefinite ) was used for obtaining an LQR
with eigenstructure assignment capability, it is needed to
analyze the frequency properties for the proposed con-
troller, EALQR. If the EALQR does not have the guar-
anteed LQR frequency domain properties, the value of
EALQR control methodology will be degraded although
any assignment of eigenstructure could be possible. As all
the eigenvalues of @ have been positive, R becomes I. If
negative eigenvalue of indefinie ) will be small, then R
approach to I. Thus, if we condisdr design method with
R = I, then it is possible that all the eigenvalues of Q can
be positive in the 3rd order system. But, there is a trade-
off between eigenvectors and weighting matrices, so, it is
impossible that all the eigenvalues of @ can be postive in
the high-order(higher than order 4) system.

In this paper, the effects of the indefinite Q in EALQR
on the frequency domain properties are analyzed. The
robustness criterion and quantitative frequency domain



properties are also presented. Finally, the frequency do-
main properties of EALQR has been analyzed by applying
to a flight control system design example.

2. Problem Formulation
Consider a linear time invariant multi-variable con-
trollable system

r =

Az + Bu,
-Kz,

(1)
2)

where z, u denote the N, m dimensional state variable, and
control input vector, respectively. The matrices 4, B and
K are system, input, and gain matrices, respectively. The
conventional LQR problem is to find the optimal control
input u* that minimizes the following cost function with
the positive semidefinite symmetric Q and positive definite
R matrices.

u =

% /000 (zTQ z + uT Ru)dt. (3)

The gain matrix, K = R~!BT P, of LQR can be obtained
by solving the following matrix Riccati equation.
PA+ATP-PBR'BTP+Q=0. 4)

Fig. 1 shows the LQR state-feedback configuration corre-
sponding to the control law of u = —Kz.
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Fig. 1. LQR control system structure

LQR’s loop TFM(transformation function matrix)
G1q(s), senstivity TFM Spq(s), and closed TFM Cro(s)
are given by

Gro(s) = K&(s)B (5)
Sta(s) = [I+Gre(s)™ (6)
Crq(s) = [I+GL(8)] 'Gro(s) (7)

where, &(s) = (sI — A)™'.

Based on the multivariable Nyquist stability theorem,
we drive a frequency domain equality for LQR[2,13], as
follows:

[I +Gro(-3)]"R[I + GLo(s)] = R+ H(s) (8)
where, GLo(s) = R™*BTP(sI — A)™'B, H(s) = [(—sI —
A)'BITQ|(sI - A)7'B).

IF @ > 0, then all the eigenvalues of H(s) are greater
than 0, i.e., all the singular values of \/H(s) are always

greater than 0. Thus, the frequency domain inequality is
given by

(I +Gra(=3s)"RII + Gro(s)] 2 R. (9)
If we assume R = pI,p > 0 in Eq.(9), then
[I+Gro(-9))"ll +Gro(s)] 2 1. (10)
We have the (Kalman) inequality
omin[l +Grg(s)] > 1 (0db). (11)

Eq.(11) will guarantee the satisfaction of stability-
robustness condition. But, If Q has any negative eigen-
value, i.e., @ is indefinite, then H(s) > 0 is not guar-
anteed. Thus, if Q is indefinite, then all eigenvalues of
H(s) can not be guaranteed positive or zero. In this case,
since the maximum singular value of \/H(s) cannot be

achieved, H(s) cannot be separated /H (s)T\/H (s). The
frequency domain properties of LQR could not be guaran-
teed, because the frequency domain inequality in Eq.(11)
cannot be guaranteed. If the EALQR does not have the
guaranteed LQR frequency domain properties, the value
of EALQR control methodology will be degraded although
any assignment of eigenstructure could be possible.

The positive and negagive singular values of H(s) are
computed by using the eigenvalues of Q which is obtained
by spectral decomposition. The difference of each singular
values determines the sign of H(s).

3. Frequency Domain Properties of

EALQR with Indefinite Q
The matrix singular value is defined as

a(A) = VA(A A), o2(A) = A\(A*A) (12)

where, o, superscript * and A(A*A) are defined as a sin-
gular value, complex conjugate matrix, and eigenvalues of
A* A, respectively. If o0(A) = \/A(A*A), then A > 0.

For separating the indefinite Q to two parts, i.e., pos-
itive eigenvalues and negative eigenvalues, we decompose
the @ using spectral decomposition as follows:

Q = eAvT (13)

where, ®, ¥ and A are right modal matrix, left modal
matrix, and diagonal matrix with eigenvalues of Q. Be-
cause Q is Hermitian in Eq.(13), we formally state the
following important result.

Theorem 1 (Spectral theorem for Hermitian matrices)[13]
Let Q € M, be given. Then Q = ®AVT = $AST
if and ony if @ is real and Hermitain. Where, ¥ € M,
and A € M, are a unitary matrix and a real diagonal
matirix, respectively. M, is an n x n dimensional matrix.
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Theorem 2

Q=
AMXTX +YTY)

(XTX +YTY), then
=AXTX)+2¥TY)
where, Q € M,, and real diagonal.

Proof :

Let us decompose the @ using spectral decomposition.

N
Q=2A2T =} ¢\l
i=1
Then,
A@A27T) = A@VA' VAST)

= N(VAeT)(VAaT)]

N
= XY (VRaT)T (VAT

N
= SNV T (VAgT)]-

i=1

Thus,

N N
AD (vl = 3 (M@ vVAiT)].

=1 i=1

If we assume N = 2, then we have

2
Y (VRoD)T (VAT = NV 67)T (VAL6T) + (VEa6T)T (VAz6T)]

i=1

ZAW‘ D)7 (VRig])]) = (VR8T (VAT N+A(V26])7 (V26T)

i=1

H(s) is given by the following form by using the de-
composed Q.

H(s) BT (—sI — A)7*®@A®T(sI ~ A)~'B

N
Y BT (—sI — A)"*¢: 087 (sI — A)"' H14)

i=1

In Fq.(14), eigenvalues of H(s) are equal to the sum of
eigenvalues with each decomposed term, i.e.,

MBT (—sI — A)*®A8T(sI — A)~'B]
N

=D _ABT(=sI - A) ¢ \i¢] (sI — 4)7'B].

=1

(15)

If all the eigenvalues of A are positive, i.e., A = VA VA,
Eq.(15) is rewritten by

N
o} [VA®T(sI — A)7'B] = Y o?[VXig] (sI — A)"1B). (16)

i=1

Since conventional LQR always yields Egq.(16), both

o2[VA®T(sI — A)~'B] > 0 and H(s) > 0 are also guar-
anteed.

But for the diagonal matrix of eigenvalues with indef-

inite Q, A # VA" VA, we have the following relation.
ABT(—sI — A)"1@A®T (s - A)'B]

= X[BT(=sI — A) " g ] (sI — A)~' B]
Ner
= 2 M[BT(=sI ~ A) 7 ¢:xig] (sI — A) 7' B]

i=1

(17)

where, Ap(-), An(+) and r are the postive eigenvalues, the
negative eigenvalues, and the number of positive eigenval-
ues. According to the singluar values theorem, the right
hand side of E¢.(17) can be rewritten by

> VAT (s~ 4)B]
- % 2WVRTeI-4TB20 ()

where, o,(-) and o, (-) are the singluar values of \,(-) and
An(), respectively. -

Eq.(18) yields positive H(s). Therefore, if all the
eigenvalues of () are negative or the sum of negative eigen-
values are greater than positive eigenvalues, then the in-
equality in Eg.(18) does not hold. Thus, if Eq.(18) holds,
then LQR frequency properties are guaranteed, athough
the weighting matrix @ is indefinite. Also, although
Eq.(18) does not hold, if the difference of each value is
yvery small, then LQR frequency properties are changed
slightly.

Assume R # pl in general, Eq.(10) can be rewritten
by

”min(\/E[I + G1q(s))) 2 Omaz(V R+ H(s)).
If we design a controller by EALQR, then Fq.(19) becomes

(19)

Tmin(VRI + G1o(s))) = 0min(VR)omin|I + GLa(s)]. (20)
Also,

OmazlVEF H(S)] = /020s (VE) + NH(5)].

Substituting Egs.(20), (21) to Eq.(19), then

(21)

a’min(\/ﬁ)amin [I + GLQ(S)] > \/a?naz (\/E) + A[I{(s)] (22)
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where, A[H(s)] = Z: VX (sI — A)7'B] -
Y GAVAT (6T - 4)B]
= From Eq.(22), we have
. 02,4 (VR) _ AH(s)]
Tminll + Gra(9)] 2 \/afmwk‘) taawm P

Ominll +GLo(s)] > Va+b (20logiova+b db) (24)

where,a-—:‘:{ﬁ%, —’\Jﬁ%,anda>l IfQis

min

positive semidefinite or if Fq.(18) is positive although Q
is indefinite, then b > 0.

Since the senstivity TFM, Spq(s), is [T + Gro(s)] ™%,
we can obtain

OmaclS10(w)] € == (Mlogro——==: db). (29

FEq.(25) means that the maximum singular value of LQR
senstivity TFM is always smaller than 20log;g \/Tdb

Using the relations for G1q(s) in Ref.[14], we investi-
gated guaranteed stability-robustness bound.

(I+GLg)™ = ((G1b + NGLe) ™ =G

and
(I +Gpo) + Grg)

=1, (27)

(T+Gry) ' +GroI+Gry) =1
From Eq.(27) and Eq.(28),
(I+Gpg) ™ =I-(I+Grg)™ (29)
From Fq.(29), singular value inequality is given by
Omaz[(I + Gro(iw) ™! < 1+ Omacl(I +Gra(iw))™]
= 140l +Gro(iv)]
1

R N (30)
or
Ominll + G ()] > f/i (31)

To obtain the singular value inequality for the closed-
loop TFM, we first get the following equation by using
Eq.(26).
Cre(s) =

Gro(8)[I +Gro(s)™ =[I + GZé?(s)]_l. (32)

(I+Ggp)~" (26)

Thus,

Omaz [CLQ (.7“))] = a'maz [I + Gzé (.7“”)] -1

O min [I + GZQ (Jw)]

Using Eq.(31) and Eq.(33), the singular value inequality
for stability-robustness can be obtained by

(33)

. 1
Umaz[CLQ(]w)]Sl+m- (34)
Eq.(34) means that the stability-robustness of
LQR is guaranteed for the following modeling
error bound, o [E(jw)] < ﬁ%’i Where,
E(jw) = G(jw)7'[Ga(jw) — G(jw)]. Ga(jw) and

G(jw) are actual and nominal systems, respectively. Fig.
2 shows the frequency domain properties for the standard
LQR which are shown in Fgs.(25), (34).

Fiequency Chacractacistios
10

max

sigma_  SGw)

max

sigma C(Gw)

- 3
10 10 10 10
frequenoy (Hz)

(28) Fig. 2. Frequency domain characteristics of conventional LQR.

4. Application to a Flight Control
System Design

The algorithm for EALQR is presented in Ref.[12]. It
is worthwhile to discuss the frequency domain properties
of EALQR.

A linear model[11]} of a fighter aircraft under consid-
eration is the linearized two input 4th continuous con-
trollable system as follows. The aircraft is trimmed at
Mach = 1.5 and h = 10,000ft. The assumed angle of
attack is a = 0.86deg, and the locally linearized lateral
directional equatons of motion is given by

g r -0.493 0015 -1.000 0.0207 rB8
Pl _ —-61.176 -7.835 4991 0.000! |p
7 - 31.804 -0.235 —-0.994 0.000| | »
¢ L 0.000 1.000 -0.015 0.000d L¢

r—0.002 0.002

+ 8.246  1.849 [6df }
0249 —-0.436| |6, |’
L 0.000  0.000
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where 83, p,r and ¢ represent the sideslip angle, pitch rate,
yaw rate, and roll angle, whereas d4s and d, are the de-
flection angles of differential flap and rudder, respectively.
The eigenvalues of the open-loop system are as follows:

A%Pe™ = [-0.7555 £+ 5.8067i, —7.8181, 0.007].

The specified closed-loop eigenvalues are —8.00(roll),
—0.05(sprial), and —4.88 + 3.66i (dutch roll). That is,
A% =[-8,

—4.88+3.66i, —0.05].

The desired left modal matrix ¥¢ and its normalized
form W2 are selected arbitrarily through the relation of

¥F; = 6;. The guide line for determining the derived
left modal matrix is given in Ref.[5].
0.6+0.6i 0.6—0.6i o.s737:l

0.6

e — 0.4 0.4+40.4i 04-04i 0.1263
— 1 0.0000 0 0 0.0000
[ 0.0000 0.0000 0

0.5883 - 0.58831

0.8321 0.5883 + 0.58834 0.9897
ol = [0.5547 0.3922 4+ 0.3922:  0.3922 — 0.3922i 0.1431:|
nor — | 0.0000 0 0 0.0000 | °
] 0.0000 0.0000 0

According to the design procedure of the EALQR algo-
rithm, the achievable normalized left modal matrix ¥2 .
can be obtained in the least square sense by

0.9897:!
0.1431 |

0.1086 — 0.04541
0.1029 + 0.0032i
0.6936 + 0.70054
0.0454 + 0.0400¢

—0.0820 0.1029 — 0.0032¢
0.6540 0.6936 — 0.7005i
—0.5158 0.0454 — 0.0400:

—0.5473 0.1086 + 0.0454i
Yoor = l: 0.0000
0.0000

The directions of each vector of the achievable left modal

matrix is placed near the best possible directions of each

desired left eigenvector in the least square sense, and the

desired closed-loop eigenvalues are assigned exactly. The

feedback gain matrix K and the weighting matrices  and

R can be obtained by

K= [-—1.5459 —-0.0592  4.1769 —0.6326]
= |-2.0178 02789 ~-17.0252 4.3767 |’
—-363.2 17.2 —1145. 292.7
R= [ 1 o.oooo] 0= [ 172 —-04 7. —0.3]
= lo.0000 1 » ¥ 11145, 7. 3961 874"
292.7 -0.3 —87.4 19.6

Eigenvalues of the weighting matrix @ are given by

MQ) =[~1218.7, 1270.2, 1.9, —1.4].
Since there are negative eigenvalues, @ is indefinite. The
maximum singular values of sensitivity TFM and closed-

loop TFM in this case have the bound as follows:

1 1
mazx ] < =
Tmaz[S1Q(jw)] < == /1.0000 — 0.0434
= 1.0224
0.1927 (db)
. 1
Omaz[CLo(jw)] < 1+ e = 2.0224
— 6.1173 (db)
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and, the resulting stability-robustness bound for the mod-
elling error is

Omaz[E(jw)] < 0.4945.

Although the maximum magnitude of A[H(s)] is nega-
tive, senstivity characteristics of frequency domain can not
drop because the maximum maganitude is small.

Fig. 3 shows frequency characteristics of the flight
control system. We can see that each maximum singular
value change under each bound in Fig. 3. The perfor-
mance of disturbance rejection and command following in
the low frequencies, and low-sensitivity performance for
the high frequencies are good.

Frequenoy Charaoteristios

B20 [-ommnbo- iz
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U3t
]

<30 |- +
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h VT

frequenoy (Hz)

Fig. 3. Frequency domain characteristics of flight system

Note if Eq.(18) is positive, frequency domain proper-
ties are invariant under the indefiniteness of . In this
case, Eq.(18) becomes negative. But, since the magnitude
is much smaller than 1, frequency domain properties are
changed slightly. If we assume that all initial conditions
are 0, impulse responses for open-loop and closed-loop are
plotted in Fig. 4.

sideslip anple pReh rate

o 10 20 30 40 S0 ] 10 20 30 40 50
timeq) 1im e0)

yow rats roll angle
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° 10 20 30 40 ) ° 10 20 30 .0 )
tmen} timeg)

035

Ao 4w w s oW

Fig. 4. Impulse responses
(dased line : open-loop, solid line : closed-loop)



5. Conclusions

There is the same relation between EA with LQR
characteristics and LQR design with EA. This is known
as the EALQR problem. EALQR has the advantages of
the existing LQR and eigenstructure assignment methods.
But, EALQR could have a state weighting matrix @ with
some negative eigenvalues for high-order systems. Because
of the indefiniteness of @, there is a tradeoff between LQR
and eigenstructure assignment.

In this paper, the effects of the indefinite @ in EALQR
on the frequency domain properties are analyzed. The
robustness criterion and quantitative frequency domain
properties are also presented. Finally, the frequency do-
main properties of EALQR has been analyzed by applying
to a flight control system design example.

Since there exists the case that an achievable subspace
of eigenstructure does not belong to an achievable sub-
space of LQR, further discussion of a subspace of both
EA and LQR shoud be exploited.
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