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Abstract

This paper studies the regional identifiability of spatially-
varying parameters in distributed parameter systems of
hyperbolic type. Let 2 be a bounded domain of R™ and
let ©p be a subregion of the closed domain Q. The dis-
tributed parameter systems having unknown parameters

defined on  are described by the second order evolution -

equations in the Hilbert space L?(2) and the observa-
tions are made on the subregion Qy C Q. The regional
identifiability is formulated as the uniqueness of parame-
ters by the identity of solutions on the subregion. Several
regional identifiability results of the spatially-varying pa-
rameters of hyperbolic distributed parameter systems are
established by means of the Riesz spectral representations.

1. Regional Identifiability for Evolution
Equations

Recently, the new concepts of regional controllability and
observability are introduced and their properties are stud-
ied by El Jai et al [2,3]. The regional concepts reflect the
importance in practical applications, which often require
the controllability and/or observability in a prescribed
subregion of the entire region. Such regional concepts
should be studied for the identifiability. In many practi-
cal identification problems of unknown parameters in dis-
tributed parameter systems, the unknown parameters are
only required to be identified in a desired subregion of the
entire region. The identification in a subregion has been
studied in the output least squares formulation. However
the research on the identifiability of parameters in the
subregion, called the regional identifiability, is very few
(Kunisch and Nakagiri [6]). In this paper, the concept of
regional identifiability is formulated in the framework of
abstract second order evolution equations, and is studied

for several classes of hyperbolic distributed parameter sys-
tems by means of the Riesz spectral representations and
cosine families.

Let © be a bounded domain of R™ with smooth
boundary 02 and let £y be a subregion of the closure
Q. Let Q be a space of parameters g defined on the closed
domain Q. The underlying Hilbert space L?(f2) is denoted
simply by H and the inner product and norm are denoted
by (-,-) and [-|. For each ¢ € Q there exists a bilinear form
a{g; ¢, ) defined on the products of Hilbert spaces V(g) x
V{(q) such that the pair (V(q), H) is a Gelfand triple space
with a notation, V(gq) — H = H' — V(q)’. This notation
means that an embedding V(¢g) C H is continuous and
V(q) is dense in H, so that the embedding H C V(g)
is also continuous and the identified H = H’ is dense in
V(q)'. We denote the norm of V(g) by || - |lv(y). The
bilinear form a(g; ¢, ) is assumed to satisfy

there exists ¢, > 0 such that

la(g; 8, )l < callélivigllellvi Ve, 9 € V(g (1)
there exist ay > 0 and \; € (—00,+00) such that
a(¢:$,9) + Al6l* > aqllélq) VO E V. 2)

Then we can define the operator A(g) € L(V,V’) deduced
by the relation

a(g;9,9) = (A, P)vigy.vig YEeEV(g), (3)

where (-, -)v(q),v(q) denotes the duality pairing between
V(g)' and V(g). Consider the system described by the
second order evolution equation in the Gelfand triple space

(V(‘I)> H):

{ %+A(q)u=f(t;q), t>0 (4)
u(0) = a(g), %(0) = b(g),
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where a(q), b(q) and f(¢; ¢) are initial values and a forcing
function depending on g such that a(g) € V(q), b(q) € H
and f(t;q) € L?(0,T; H) for all T > 0. Then by Lions and
Magenes [8] and Dautray and Lions [4], the weak (or vari-
ational) solution u = u(t;¢) to (1) exists uniquely which
satisfies

u€ L*(0,T; V(g), v € L*(0,T; H), u" € L*(0,T; V(q)')-
()
This solution u(t; g) is called the state of (4).

Let 2y be an observable subregion of ) of positive
Lebesgue measure. The observation of the state u(t; g) of
(4) is made by

u(t;9)la, = Xaoult; 9), (6)

where X, is the characteristic operator from L2?(f2) to
L?(Qp) (cf. El Jai et al [3]). Note that V(q) C H = L3(9).

The regional identifiability problem of unknown param-
eter ¢ in Qg is formulated as follows. Let ¢™ € @ be a
known model parameter. The model evolution equation
system in the Gelfand triple space (V(¢™), H) is given by

{ %+A(qm)u— fi&d™), t>0 ()
u(0) = a(q™), %(0) = b(g™).

Under similar conditions on a(¢™), b(¢g™) and f(¢;¢™) as
in (41), the model state u(t; ¢™) exists uniquely, which sat-
isfies the regularity (5). The regional identifiability prob-
lem using the model (7) is that: Under what conditions
on ¢™ does the equality

u(t; @)lao = u(t;q™)la,, t>0 (8)
imply
? (9)
If the above implication holds true, the parameter ¢ is
said to be regionally identifiable in £ at ¢™. By (6) the

meaning of equality (8) (i.e., the zero output error on §2
) is that

glo, = ™o,

u(t,z;q) = u(t,z;q™) for ae .z €, t>0.

But the meaning of the regional identifiability (9) of ¢ is
somewhat ambiguous, because the space of parameters @
is not given exactly. The exact meaning of (9) depends on
the choices of @ and €2y, and is explained in the practical
problems of Section 3 and Section 4.

In this paper the case of regional identifiability including
forcing functions is studied. Thus, for theoretical simplic-
ity, it is assumed that a(q) = a(¢™) = b(q) = b(¢™) =0,
and

f( ) fO(t)fl(q)v fOeLloc( ) fl(Q)EH;
f(t) qm) = fO(t)fl(qm), fO € leoc(oa OO) fl(qm) €H

in (4) and (7). The case including initial values (without
forcing functions) can be treated by using cosine family as
in this paper.

In order to study the regional identifiability problem in
some general context, it is supposed that A(g) is a Riesz
spectral operator for each ¢ € Q (cf. Curtain and Zwart
[1]. The restriction of A(q) on H = L%(Q) (H is indepen-
dent of g!) defines a closed operator with dense domain

D(A(9) ={¢eV(g): Alg)¢ € H}

in H, which is also denoted by the same simbol A(q). The
operator A(q) is said to be a Riesz spectral operator on H
if there exists a set of all isolated eigenvalues {\,(q)}32,
of —A(q) such that the semigroup T'(t;q) generated by
—A(q) is represented by

T(t;q)p =Y e VP (q)p, p€ H  (10)
n=0
Here in (10), P,.(q) is the projection given by
1 -1
P = g [ - A@) e (1

and T, in (11) is a sufficiently small circle with cen-
ter —Xn(g) such that its interior and TI',, contain no
points of the spectrum o(A(g)) except for —A,(g). Fur-
ther we assume that A(g) generates a strongly continu-
ous cosine family C(¢;¢) of bounded linear operators in
H, t € (—00,00). (see Fattorini [5]). Then we can verify
that the cosine family C(¢;¢) and the sine family S(t;q)
are given by

Clt;q)p =Y _cos\/=An(@)t Pu(Q)p, p€ H  (12)
n=0
and
Stqp = / C(s;q)pds
SlIl

P (@)e, ¢ € H,(13)

AN

respectively. The relation between the semigroup and the
cosine family is given by

Tt qp = \/—— /
Further the solution u(%) of (4) is represented by
ut;q) = C(t9)alg) + S(¢ 9)blg)
t
+ [ se-safsads, t20. (5)
0

) (s;q)pds, p€ H, t>0
(14)

In this setting the semigroup T'(¢;¢) given by (10) is an-
alytic in ¢ > 0 (see [5]). Note that the series (10) at =
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converge for a.e. = € . It is well known that if A(g) is
nonnegative, selfadjoint on L2(2) with compact resolvent,
then A(g) is a Riesz spectral operator which generates a
strongly continuous cosine family in the sense given above.

In Nakagiri [9,10], Nakagiri and Yamamoto [11] and Ya-
mamoto and Nakagiri [13,14] the identifiability problem is
studied for the special case where the observation is total,
ie., @ =g in the framework of semigroup theory. But
the operator theoretical method developed in the above
references can not be applied to this regional identifiabil-
ity problem, because the restriction operator to g is not
commutative with the operator A(q).

The purpose of this paper is to establish a number of
criteria for the regional identifiability of spatially-varying
parameters in several types of hyperbolic distributed pa-
rameter systems. This paper is composed of five sections.
Preliminary results are collected in Section 2. By using the
results, the regional identifiability criteria are established
in Section 3 and Section 4. In Section 3 the necessary and
sufficient condition of parameters p1, p2, ps, f1 of the one
dimensional general hyperbolic equations

Uy = P1(T)Ugg + P2(T)ug + p3(z)u + fo(t) f1(x)

to be regionally identified in the subregion Qy = [z, z1] C
Q1 = [0,1) is established. In Section 4 the regional identi-
fiability condition of p, f; for the multi dimensional wave
equation

U = Ay — p(.’L‘)'lL + fO(t)fl (i[))

in Qg C Q is proved. Section 5 is the conclusions. We
note that our approach can be applied to other types of
hyperbolic equations such as beam equations, vibration
equations of plates, Schrédinger equations.

2. Preliminary Results

In this section several preliminary results are stated with-
out proofs. Some of the proofs can be found in [6], [11]
and Levitan and Sargsjan [7]. The following result is taken
from Titchmarsh [12; Theorem 152; p.325].

PROPOSITION 1 Let g and k belong to L}

1oc(0,00). If k
is not identically zero on (0, 00), and

t
g+ k(t) = /0 ot — s)k(s)ds =0 forae.t>0, (16)

then g(t) = 0 for a.e. t € (0, 00).
The following proposition is crucial in our analysis.

PROPOSITION 2 Let {A\,}32, and {un}o2, be strictly
monotonically  increasing  sequences such  that
Yoo pene Mt and 3o dne~#nt converge uniformly on
[to,00) for each ¢5 > 0. Assume that

Z Cpe~ 2t = Z d,e #nt for all t>0.

n=0

(17)

n=0

If ¢, # 0 for some np, then there exists a kp such that
)‘no = Hkq and Cng = dko-

Let @ be the space of parameters defined on QCR"
and let Qg C Q. From Proposition 2 the following useful
proposition follows.

PROPOSITION 3 Assume that A(q) is a Riesz spectral
operator for each ¢ € @) and that the series ‘

T(t; q)p(z) = Ze”)‘"(q)tPn(q)go(:I:) ae. z€Qy (18)

n=0

satisfy the assumption in Proposition 2 for each ¢ € @
and ¢ € L?(Q). Assume further that ¢, p™ € L?(f2) and

Po(g™e™(z) £0 a.e.z €8y (19)
for some ng and €3 C €. Then the equality
T(t q)pla, =Tt 4™)¢™ 0, forallt>0  (20)

implies |, = ¢™|q, and that there exists a kg such that
Anog(4™) = Meo () (21)
Py (@)™ (2) = Pio(@)p(z) ae.ze.  (22)

In the applications given in Section 3 and Section 4 the
conditions (21) and (22) imply the regional identifiability
(9). By continuation, the equality (22) holds for all z € Q;
provided that both functions in (22) are continuous on .

Next we consider a bilinear form corresponding to
one dimensional hyperbolic equation. Let py(z) >
0, po(z), p3(z) and Fo, P1 are functions and real numbers
with p; € Cl[O, 1}, p2, p3 € C[0,1]. Let H = L2(0, 1)
and V = V(6, 41) be a Hilbert space defined by

vV o= {weHl(O,l):—%(O)wLﬂolﬁ(O):
dyp _
L) + (1) =0},

Then (V, H) is a Gelfand triple space. The bilinear form
a(¢,¥) on V xV depending on p1, pa, ps is defined by

a($,¥) = (m¢',9) - (P2 - P1)¢, %)
—(p3¢a ¢)
It is verified that a(¢,) satisfies the conditions (1) and

(2). This form defines the operator A € L(V,V’) by (3)
and the restriction on H = L2?(0,1) is given by

(—A)(z) = p1(@)Y"(2) + P2} (2) + ps(a)(2)
(0<z<1)
D(4) = {% € B(0,1) : ~4(0) + foy(0) =

(1) + pu(1) = 0}.
(24)

(23)
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A is not selfadjoint in L2(0,1) in general, however it is
verified in the following Proposition 4 that A is a Riesz
spectral operator and generates a strongly continuous co-
sine family on H. The eigenvalue problem for —A is to
find nonzero 1 and g such that

{ ~Ap(z) = mp(a)  (0<z<1)

220+ ow(1) = L) + (1) =0

(25)

holds.

PROPOSITION 4 There exists a system of eigenvalues
and eigenfunctions {n, ¥n}2, of —A in L2(0,1) such
that — A generates the semigroup 7'(t) and the cosine fam-
ily C(t) on L?(0,1) given respectively by

T(t)p = i e P .o e L0,1) (26)
=
and
C(typ = icos V=it Pop, € L*0,1). (27
Here ~
Pup = (@0t = ( [ lcp(m)zbn(z)p(z)dx) b (29
and p is the weight function defined by
o) = s o [ 28a) e (9

Further it is shown that the eigenfunctions %), are uni-
formly bounded on [0, 1] and

\/;Tn:Cn+O(%)asn—>oo (30)

for some nonzero constant C.

By Proposition 4 it is verified that the series T'(t)p(z) at
z € [0,1] in (26) converge uniformly on [0, 1] x [tg, c0) for
any to > 0 by (30) and ¢ € L?(0,1) (hence, a continuous
function on [0, 1] x (0, 00)).

PROPOSITION 5 Let t,,,,%n, and ¢,, be three distinct
eigenfunctions of —A. Let W be the Wronskian given by

wnl(x) wnz(x) wns(x)
W (¥n,, ¥ny, ¥ng)(®) = det | ¢ (%) ¥n,(z) Yn,(z) |-
() Un, (@) ¥, (z)
(31)
Then the set
E = {z €[0,1] : W(tn,, ¥n,,¥ny)(z) = 0} (32)

has no interior points in [0, 1].

The set E seems to be finite sets, however this could not
be proved by the author. In the case where all 1, are
analytic, this is clear. It is only shown that 1), are of
C*°-class by the Sobolev imbedding theorem.

3. One Dimensional Hyperbolic Equations

This section studies one dimensional general hyperbolic
partial differential equations in L2(0,1). Throughout this
section it is supposed that Q = (0,1) and Qo = [zo,21] C
Q= [0, 1], Tog < T31.

Consider the following system described by general hy-
perbolic partial differential equation of the form

ute = P1(Z)Uss + P2(T)tz + p3(z)u + fo(t) f1(z)
(xe, t>0)
u(z,0) =0, u(z,0)=0 (ze)

—uz(0,2) + Bou(0,t) = uz(1,¢) + Fru(l,t) =0

(t>0),
(33)
where p1(z) > 0, p2(z), ps(z), Bo, P1 and fi(z) are un-
known parameters with p; € C[0,1], p, € C[0,1], ps €
C]0,1] to be regionally identified on €y = [zo,z1] C Q.
Let C1[0,1] = {p € C[0,1] : ¢(z) > 0 for all z € [0,1]}.
For the system (33) the parameter space Q is defined by

Q = CL[0,1] x C[0,1] x C[0,1] x L*(0,1) x R x R (34)

and the unknown parameter ¢ is given by

q= (PlaPZaP& flaﬂOaﬁl) € Q (35)
The model parameter g™ is given by
g™ = (p7", P7" P35, 1 85 BT") €Q (36)

and the model system is defined by (33) in which ¢ is
replaced by ¢™.

The restriction g|g, of ¢ on Qy = [zg,z1] is defined as
follows:

If g # 0,21 # 1, then

qlo, = (p1lags P2lagy: P3lags fila,);
if zg = 0,21 # 1, then
qla, = (p1l00, P2lao, P3lao, f1la,, Bo);
if zg £ 0,z = 1, then
qla, = (P1laos P2lag, Palags fila, B1);
and if o =0,z =1 (i.e,, Qg = Q), then
dla, = ¢ = (p1,P2,P3, f1, B0, B1)-
Hence, the regional identifiability (9) means that

pt(x) = p:n(m) (Z € QO) i= 1)2’ 3)
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fi(z) = f*(z)

(a.e. z € Q)

and

Bo = BT
when Qo = [0,z1], &1 # 1. Other cases are similar.
The system (33) and the model system can be described
by the second order evolution equation systems (4) and
(7) in some Gelfand triple spaces with f(¢;q) = fo(?) f1,
F(t:4™) = fo() " and a(g) = a(g™) = b(g) = b(g™) =
respectively. Then the operator A = A(g) defined through
the bilinear form (23) on V(q) = V(fo, /1) correspondig to
the system (33) is characterized by (24) and has compact
resolvent in L2(0,1). Similar facts holds for the model
operator A™ = A(q™) corresponding to the model system.
Then by Propsition 4 there are the sets of real eigenvalues
and eigenfunctions {\,, ¢n 132 of —A™ and {pn, ¥n},
of —A such that A™ and A are Riesz spectral operators
and generates strongly continuous cosine families. The
weight functions p and p™ are defined by (29) and

ywxyziéhﬁem>(4$pgghﬁ) (wE[&UL (37)

P (8)

respectively. The semigroup T'(t) generated by —A is
given by (26) with (28), and the cosine family C(t) is given
by (27) with (28). Also —A™ generates the semigroup
T™(t) and the cosine family C™(¢) given respectively by

T (t)e Z e, pn)pmipn, @ E€H (38)
n=0
and
Cm(t ZCOS V —A t((,D, (pn pmPny P € H. (39)

n=0

The corresponding sine families S™(¢) and S(t) are give
by

Z sin \/__t

Sm(t) (907 ‘pn)p"“pna Y€ H, (40)

sin \/— it
t)‘P Z Un Wawn)p¢n1 p € H,

n=0

(41)

respectively. Hence, in this case the equality (8) is equiv-
alent to

/Ot F(z,t —3)fo(s)ds=0 (ae z€Q, t>0), (42)

where

mt) _ Zsms_/)‘ nt

Z o #nt (fl’ ¢n)p¢n($) (43)

fl , ‘pn)p"‘ ©Pn (-'17)
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If fo(#) is not identically 0 in (0, 0o}, then by Proposition
1 it follows from (42) that F(z,t) = 0 for a.e. z € Qp =
[0, z1] and all ¢ > 0. By differentiating this equality we
have from (27) and (39) and

C®) fila, = C™(®) fT" |

Applying the transformation (14) to (44) and noting that
the restriction operator xgq, is bounded, we can verify

T() filao =T™ (O f"lao

Hence by Proposition 3 and Proposition 5 we can prove
the following Theorem 1.

for all t > 0. (44)

for all ¢ > 0. (45)

THEOREM 1 Assume that fy is not identically 0 in
(0,00). Then the parameter ¢ in (34) is regionally identi-
fiable in Qg at ¢™ if and only if there exist three distinct
eigenfunctions @n, , ¥n,, Pn, of —A™ such that

(f{n)wni)t?’" 7é 0 (Z = 1’2’3)

That is, the condition (46) is necessary and sufficient for
that the equality (6) implies

pi(z) = pi"(2)

(46)

(z €, i=1,2,3) (47)

and
filz) = f(z) (ae z€Q) (48)

if zg # 0, z; # 1, and further implies 8y = G7* (resp.
)Bl = ﬂin) if Tog = 0 (resp Ty = 1)

4. Multi Dimensional Wave Equations

Let @ ¢ R™ be a bounded domain with smooth bound-
ary I' = 8. The observable subregion Qy C € is assumed
to be closed and connected having positive Lebesgue mea-
sure in R™. Further it is assumed that the intersection
Qo NT is also closed and connected in I'. In this section
the regional identifiability of systems described by the fol-
lowing multi dimensional heat equations is studied.

Consider the system described by the n-dimensional
wave equation with 0 initial value and Robin-type bound-
ary condition

uy = Au — p(z)u+ fo(t)filz) (z€Q, t>0)
{ u(z,0) = u4(z,0) =0 (zeq)
3—2+/3“lan=0 (t>0)
(49)

and the model system described by

uy = Au — p"(z)u+ fo(t) [ (z) (ze€Q, t>0)
u(z,0) = ug(z,0) =0 (x e )
% 4 gmul,, =0 (t>0),
(50)
where p, p™ € C(Q), B, p™ € C(T') and £ denotes

the differentiation along the outer unit conormal vectors,



fo € LY0,T), and f;, f* € L*(Q). Here in the system
(49) a potential p(z) in C(Q2), a boundary coefficient 8 €
C(T') and the forcing function f;(z) in L?(Q2) are unknown
quantities to be regionally identified in Q4 by using the
model system (50). The parameter space () is defined by

Q =C(Q) x L*(Q) x C(I), (51)

and the unknown and the model parameters ¢ and ¢™ are
given respectively by

g=(p,f1,B), ¢"=@", ") €Q
in this case. The restriction g|n, on Qg is defined by

{ Q|Qo = (plﬂoafllﬂo)
Q‘Qo = (P‘no,fﬂno,ﬂlnonr)

(52)

if meas(QoNI) =0
if meas(QpNT) >0,
(53)

where meas(Qp NT') is the Lebesgue measure on I'. The
systems (49) and (50) are described by (4) and (7) in some
Gelfand triple spaces.

By using a priori estimates of elliptic equations, unique
continuation theorem due to Carderén we can prove the
following theorem.

THEOREM 2 Assume that fo is not identically 0 in
(0,00). Then the parameter ¢ € Q in (51) is regionally
identifiable in Qg at ¢™ if and only if

f™ is not identically zero in L2(f2). (54)

That is, the condition {54) is necessary and sufficient for
that the equality (6) implies

p(z) =p™(z) (z€o) (55)
and
fi(z) = ff(z) (ae z€ Q) (56)
if meas(Qp NT) =0, and further implies
Bly) =0"(y) (YeQNT) (57)

if meas(QpNT) > 0.
5. Conclusions

The regional identifiability of spatially-varying parameters
in distributed systems of hyperbolic types is formulated by
the second order evolution equations setting via semigroup
and cosine family methods. Using the setting, necessary
and sufficient conditions for the regional identifiability of
one dimensional general hyperbolic equations and multi-
dimensional wave equations are established. Such condi-
tions are rather simple, and therefore are easily applied to
practical systems studied in this paper. The method pre-
sented here can be applied to various types of hyperbolic
distributed parameter systems including beam equations
and vibrating plate equations.
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