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Abstract

In this paper, a new input estimation algorithm is
proposed for target tracking problem. The unknown
target maneuver is approximated by a linear com-
bination of independent time functions and the co-
efficients are estimated by using a weighted least-
squares estimation technique. The proposed algo-
rithm is verified by computer simulation of a realistic
two-dimensional tracking problem. The proposed al-
gorithm provides significant improvements in estima-
tion performance over the conventional input estima-
tion techniques based on the constant-input assump-
tion.

1 Introduction

A linear Kalman filter has been widely applied to tar-
get tracking problems because of its recursive struc-
ture and optimal estimation property(1]. In the pres-
ence of unknown target maneuver, the estimates of
Kalman filter is biased, and thus an auxiliary estima-
tion process should be implemented to compensate
the error [2]. Two different approaches have been
widely studied to handle this problem: model-based
adaptive filtering and unknown input estimation.
The model-based adaptive filtering technique is
pioneered by Singer [3], who suggests that the un-
known input of a manned maneuverable vehicle is
modeled as a correlated white noise process. This for-
mulation suppresses the bias caused by unknown in-
puts to some degree but exhibits poorer performance
than simple Kalman filtering when there is no target
maneuver. Instead of relying on a statistical descrip-
tion of input maneuvers, Bar-Shalom and Birmiwal
[4] propose a variable-dimension filter which intro-
duces extra states when an input is detected. Another
interesting work is done by Moose [5] who considers a
multiple-model formulation in which the target accel-
eration is assumed to belong a time-invariant set of
discrete values and the change of its value is modeled

323

as a semi-Markov process. Model-based adaptive fil-
tering techniques have evolved to the interacting mul-
tiple model (IMM) algorithm [6], in which the change
of the plant is modeled as a Markovian parameter
having a transition probability. Using a hypothesis
merging technique for multiple-model filtering, the
IMM algorithm calculates the Bayesian sum of the
filter outputs.

Although the model-based approaches are easily
implementable and computationally efficient, the fil-
ter performance may be greatly degraded in the pres-
ence of external inputs that comply with none of the
models. Input estimation is a totally different ap-
proach which determines if external inputs exist, and
directly estimates the magnitude of the unknown in-
put. McAulay, et al [7] uses statistical decision theory
to derive an optimum input detector. Once an input
sequence is detected, then the filter is reinitialized
using the most recent data. Chan, et al {8] proposes
an input estimation technique using a supplementary
estimation pro:edure to a normal Kalman filter and
utilizing the least square method to calculate the in-
put magnitude. Bogler [9] extends this method to
derive a recursive algorithm based on multiple-model
filtering which is inspired by [10].

The merit of input estimation is that unknown
inputs are directly estimated from the available mea-
surements regardless of the input level, without re-
initializing any of filter parameters. However, the
earlier works on input estimation assume that the
input level is constant within the detection window.
This has been the main drawback of the input estima-
tion approaches since a realistic input may change in
various fashions within the detection window. Conse-
quently, estimation of the unknown input signal based
on such a strong assumption on the input shapes gives
only limited performance. Direct estimation of the in-
put level at every sample time can be conceived as an
alternative to <he approaches based on the assump-
tion of a constant-level input. However, estimation
of an arbitrary input signal is computationally ineffi-



cient as the detection window size (or the number of
measurement samples) increases. Note that the de-
tection window size should be sufficiently large if the
input sequences are properly estimated from noisy
measurements.

In this paper, a new input estimation method is
proposed to overcome the constant-level assumption
on input signal. Instead of estimating the input se-
quence at every sample time, the proposed method
approximates the input signal as a linear combination
of some elementary base functions of time. This for-
mulation greatly simplifies the estimation procedure
since only the coefficient vector of the base functions
needs to be estimated. Due to this feature, a large de-
tection window can be employed without significantly
increasing the computational burden. Furthermore,
the proposed method is capable of decomposing the
unknown input sequence by using time functions of
interest. For example, if a constant and a linear func-
tions are chosen as the base functions, then the esti-
mated coefficient vector is likely to represent the con-
stant and linear components of the unknown input
sequence.

The estimation algorithm is derived by using the
weighted least-squares estimation method. The opti-
mal estimates of coefficient vector are determined by
extremizing a cost value which is a weighted sum of
filter residuals. The proposed method also includes a
detection logic, which is an important part of input
estimation. A generalized detection logic based on
the conventional chi-square test is derived. This logic
analyzes the statistical characteristics of the contri-
bution of measurement noise to the cost value and
compares the result with a threshold value calculated
for a prescribed probability of false alarm(PFA). The
state estimates are affected only when an input de-
tection is declared.

As a numerical example, the new algorithm is
applied to a realistic two-dimensional tracking prob-
lem. Various simulation results show that estima-
tion performance is significantly enhanced by includ-
ing linear, or quadratic components in addition to the
constant-level input model. The effect of the choice
of base functions on estimation accuracy is also in-
vestigated.

This paper is organized as follows: First, two dif-
ferent linear Kalman filters are considered; one is for
the nominal system which does not consider the un-
known input sequence, and the other is for the system
whose unknown input is approximated by a linear
combination of base time functions. Using the resid-
uals of the two filters, an input estimation algorithm
is derived using the weighted least-squares estima-
tion technique. Next, a detection logic is presented
and the update procedure is summarized. Finally,
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the proposed input estimation algorithm is applied
to a conventional two-dimensional tracking problem
for two different input scenarios, and computer sim-
ulation results are provided.

2 Problem Formulation

The mathematical model is expressed in the rect-
angular coordinate system. The system equations
are linear time-invariant with linear measurements
which are transformed from bearing-only measure-
ments. The relative motion of target is

Xpr1 = Fxp+ Gug + Ewy,
Zry1 = HXpgpr + Ve, (1)
E {wkw'f} = Qkék,-, E {vkv}'} = Rkék,-,

where x; = (x,,,é;,,,y,,,y,,)T is the relative positions
and velocities of the target in 2-dimensional plain,
and wyg, Vi are noise sequences with given covariance
matrices. The appropriate matrices are

17T 0 0
0100
F=1loo0o171]|
000 1
T2/2 0

T 0

G =E=| Y% ppl|
0o T
_[1000
H‘[0010]'

A linear Kalman filter for this system is expressed
as

Ret1 = MIE+1§‘k + Nepug + Kiy1Zg41,
Piy1 = FBFT+ EQLET, (2)
Pey1 = I~ Kpp1H) Py,

where My, 2 [I - KyH]F,Ny £ [I - KxH]G, and
the Kalman gain matrix is computed as
s T 5 T -1

Kyyr =P HT [HP H + Ren] . (3)
In the case that the input vector sequence {u;} is
unknown, the Kalman filter does not work properly
unless an adaptive tuning of the filter model or a sup-
plementary estimation process of the unknown input
is implemented; the latter is referred to as input es-
timation. In general, the filter for input estimation
is composed of the bagic Kalman filter and an addi-
tional input estimation algorithm to compensate the
effect of unknown inputs.



Similar to the other estimation algorithms, we
first construct a nominal Kalman filter which assumes
that the system model has no input, i.e. uy = 0 in
(1). The state of this filter are regarded as the nom-
inal estimate until the presence of unknown input is
detected. The nominal estimate is denoted as X{ to
discriminate it from Xj, which is the actual estimate
we obtain when unknown inputs are present. The fil-
ter equation of the nominal Kalman filter is obtained
by letting uy =0 in (2) as

Rip1 = M1 X + Kev1Zk41- (4)

Suppose that there are no inputs before the time ¢ =
kT, then X; = X{. But if there exists an input signal
uy at ¢t = kT, then the two state estimates will no
longer be same, and the difference after n sampling
timeg is expressed as

Ritn = xk+n =+ Z k+nNk+zuk+z—1a (5)
i=1

where the transition matrix M is defined as M} 2

MgMj_q -+« Myy. The residuals of the two filters at
time ¢ = (k + n)T are defined as [1]
Setn = Zhen — HepnXpgn, 6
7] A £8 ( )
k+n = Zktn — Hk+"xk+n'

From (5), the two residuals are related as

n

Sktn = Shin = ) HinMEFi Nk it i1 (7)
i=1
3 Estimation of Unknown Tar-
get Maneuver
Consider a detection window of N samples. To sim-

plify the expression, the following notations are de-
fined.

;A
AFYL S HyynMEE Ny, (8)
A
Bitn = HipnPrinHL, + Rign,  (9)
where Aﬁi; represents the contribution of the input

Up4;—1 to the measurement zgyn, and By, is the
covariance matrix of $g4n- The cost value is defined
as

J(k,N) 2~ Z N ynBitnShin.  (10)
n=1
Now, assume that the input sequence is expressed

ag a linear combination of p time functions as

P
wp =) ab;(t), (11)

=t

where a; € R is a constant-coefficient vector of a
scalar function b;(¢x). Using (7) and (11), the cost
becomes

N
Ik N) = %Z( b= Do AR
T

n=1 =1

14
> ajbj(teric1) | B, (12)

i=1
n . P
St — D AR azbi(trsia)
£ s

The estimation of the unknown input is performed
by calculating the optimal coefficient vectors 4;,j =
1,...,p, which maximize (due to sign convention) the
cost value defined by (12).

The estimation process is straightforward. First,
differentiate the cost value with respect to a,,a =
1,...,p, to obtain

Z (Ck+n k+n i+n_

n=1

al [+ -1 7 8 a (13)
Z ( k+n) Bein Z Cinlg =0,
n=1 B=1
a,3=1,.
where n
A .
Clyn = At ba(tiyio). (14)
i=1

€ Rmx! ig the sum of the contri-
[tksth+n—1), to the measurement

Observe that Cg,
bution of by (t;),t; €
Zii1n. Now define

N
A
Wo = Z(Cgi-n) Bk+n%k+n€w7 (15)
n=1
A N T
Yapg = Z(C’?—Fﬂ) Bl:+n k+new)<l’ (16)
n=1

then (13) is simplified as

P
Z’yagﬁﬁ =wg, a=1,...,p. 1
=1

For further simplification, we define

Yir o Mp

T S : € §R‘P><lp,
’)’pl “ae 'Ypp (18)
Wi ﬁl

e ewr al| : |ewr

-~

Wp ap



Then, (17) is rewritten as

Ta=Q. (19)

The solution of equation (19) can be obtained by sim-
ply inverting the matrix T as

a=r1q. (20)

4 Detection and Update

The most useful tool for the detection logic is the
chi-square test. First, assume that no input has been
applied to the system. Then the cost value of (10)
is a chi-square random variable. A further investi-
gation of this value can be made by substituting the
estimated coefficient vectors into (12). A straightfor-
ward calculation by substituting (20) into (12) results
in
JO

N
1 _ 1 B
=3 2 @hn) B8+ 507070 (21)
n=1

The first term of (21) is independent to the es-
timation algorithm. The second term is, therefore,
solely interesting for the detection purpose. We de-
fine this term as a new cost value

Je £ QTrg. (22)

The statistics of the new cost value is characterized
by the following lemma.

Lemma 1 The cost value J7 is a chi-square random
variable of Ip degree of freedom.

(The proof is omitted.) |

Suppose X is the threshold value used for the de-
tection policy expressed as an inequality condition

JP=aTr'a> (23)

Then the detection threshold X\ can be determined
by the prescribed probability of false alarm (PFA),
which represents how probably happen false alarms
due to the measurement noise, as

A= XPraip: (24)

The value can be obtained from the statistical table
as in [11].

Once the input is detected, the filter state vector
and covariance matrix are updated using the follow-
ing equations.

aup

Xn (25)

P
— 8 E: j &,
- xk+n+ Dk+na.7
Jj=1
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?
8(:3-11 = Sfyn— Z ClJn+nﬁ.‘i (26)
j=1
. . LA Suu . AT
B2, = Pun+ . Ditaly (Diia) ()
i=1 j=1
o LA S . \T
By}, = Biia+t Z Z Crinbij (Cr]:+n) (28)
=1 j=1
foralln=1,...,N, where
n
. A .
Dl =3 MEH Nipabi(terio) € 7, (29)
i=1

is the sum of the contribution of input base function
b;(t:), ti € [tx, §k+,,_1], to the filter state vector, and
is related to C, ,, as

Cln=HD] (30)

+n°

5 Simulation

The proposed algorithm is verified by computer simu-
lation of a realistic two-dimensional tracking problem.
The base functions used for simulations are displayed
in Fig.1, where b; is constant, b is linear, and b3 is
quadratic.

The proposed algorithm is tested with two input
scenarios illustrated in Fig.2. Scenario I is the case
that the target executes a constant 3g maneuver in
both axes from ¢ = 20 sec to ¢ = 25 sec. Scenario
II considers a more realistic case in which the tar-
get turns 180° to evade the closing intercepter. The
initial values for both scenarios are chosen as

#o = (0, 200, 0, 200)7,
1001,

Zo
B =
that is, the target starts from the origin with a ve-
locity of 200 m/sec in both = and y axes. The noise
covariance matrices are assumed to be constant with
respect to time as R = 100I and @ = I. PFA is set
as 0.005.

We considered three different input estimation;
Scheme I corresponds to the well-known input esti-
mation method of Chan, et al [8], which considers b,
only. Scheme II has two base functions b, and b, and
Scheme III includes all three base functions. The fil-
ter performance of each scheme for each of the two
input scenarios is computed by a Monte Carlo simu-
lation with 20 runs. The simulation results are given
in Figs. 3 and 4.

The input is constant in Scenario I so that Scheme
I is expected to be appropriate, but its performance



falls short of that of Schemes I and III. Scheme I pro-
duces an input estimate smaller than the actual input
level, which can happen if the input starts in the mid-
dle of the detection window, as shown in Fig.5. With
Schemes II and III, therefore, the input profile can be
approximated better than with Scheme I even for the
case of constant input. Estimation accuracy may be
improved by using more of higher-order polynomial
time functions. This is why the average RMS errors
are much smaller with Schemes II and III.

It is observed that Scheme III does not perform
better than Scheme II during the maneuver. But the
RMS error of Scheme IIT becomes much smaller for
the post-maneuver period. This implies that the abil-
ity of compensating the unknown input sequence can
be enhanced by using more base functions, in gen-
eral. However, the use of more base functions may
result in computational inefficiency without a signifi-
cant improvement in performance. Extensive numer-
ical simulation must precede the selection of optimal
base functions for a trade-off between estimation per-
formance and computational efficiency.

6 Conclusion

A new input estimation algorithm of linear stochas-
tic systems is proposed in this paper. The proposed
method approximates the unknown input as a sum
of elementary time functions and estimates the op-
timal coefficient vector by using the weighted least-
squares method. This approach enables us to work
with a more general formulation than the conven-
tional methods considering constant-input cases only.
Simulation results show that the proposed algorithm
using time-varying base functions provides better es-
timation performance during and after the unknown
target maneuver than the previous input estimation
techniques considering constant inputs only.

The main advantages of the proposed method may
be summarized as follows: fast-varying unknown in-
put sequences can be easily handled to obtain better
estimation accuracy; estimation of the coefficient vec-
tor is computationally more efficient than estimation
of the input sequence itself. Moreover, the proposed
algorithm can be applied to a general class of time-
varying linear stochastic systems. Not only to the
target tracking problem considered in this paper, the
proposed algorithm may also be applied to fault de-
tection and identification of a linear stochastic sys-
tem.
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