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Abstract

In this paper, an approach to the reduced order Ho
controller synthesis is proposed. This approach employs the
frequency weighted model reduction whose frequency
weights are deduced from the closed-loop system regarding
the controller order reduction errors as uncertainties in a
plant, while the resultant reduced order H.. controller
guarantees prescribed H.. control performances.

1. Introduction

The standard H.. controller has at least the same order as
that of the plant to be controlled. When, in particular, a plant
has the higher order, the corresponding H. controller may
have practically unnecessary orders. However, the lower
order controller is desirable in practice, if the resultant
performance degradation is kept within an acceptable
magnitude. Therefore, reasonable reduced order Ha,
controller synthesis has long been looked for in the field of
controller design.

The frequency weighted model reduction is a very useful
method in the confroller order reduction. This method
reduces the order of model on the condition that the reduction
error is made small over the frequency range where the gain
of frequency weight is high. Today, there are two
representative methods for selecting frequency weight used in
the problem of H.., controller order reduction such that the
resultant controller guarantees prescribed H . control
performances. These methods regard the reduction error as
controller perturbations [1] - [2], and reduce the order of Hx
controller so that the reduction error is kept within the bound
of Youla’s free parameter. These methods have advantages
such that the resultant reduced order controller certainly
guarantees the prescribed H. control performances, while
these methods have disadvantages as well.

One, called performance weighted additive reduction,
which is the method regarding the reduction error as additive
error, needs many steps for making frequency weighted
function. The other, called performance weighted coprime
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factor reduction, which is the method employing left or right
coprime factor, is applicable only to the central solution of the
H.. controllers.

This paper studies H. controller reduction method,
employing frequency weighted functions which are made by
fewer steps than the performance weighted additive
reductions, while the resultant reduced order H.. controller
guarantees prescribed H., control performances not only for
the central solution but for general solution.

This method is realized by regarding the controller order
reduction errors as uncertainties in a plant and by utilizing
some mathematical properties found in H. norm. An
illustrative example is given to verify the consequences.

2. Reduced order H..control problem
2.1 Definition of ‘the reduced order H., control problem
Let a linear time invariant system G be given as
i(e) = ax(e) + Byw(r) + Bou(t)

G4 2(t) = Cyx(r) + Dy w(e) + Dyu(t)
¥(t) = Cx(e) + Dyywle) + Dyult)

(2.1.1)

where

x(t) eR” is the state vector, z(t) eiRpl the controlled
output vector, y(t) € ‘.RPZ the measurement output vector,
w(t) € ‘le , and w(t) € L2, the disturbance vector,

u(t) € 9?”'2 the control input vector,

and the system G
assumptions;

satisfiecs the following standard
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The reduced order H. control problem is defined as
follows, in the paper.

[ Definition ].
When an 7-th order H. controller satisfying the H.
control performance, which is

G € RHo, (2.1.3)

I(é(z,w)”w <y, ¥y>0

is given for the system G in eq. (2.1.1), the reduced order H..
control problem is defined as the problem to find an r -
th (0 < r < #i) order controller Kr satisfying the H. control
performance given by

§ €RHy, ﬂ s (z,w)”oo <y, ¥>0 (2.1.4)

and Kr, a solution of this problem, is defined as the reduced
order H. controller, where I?r represents lower LFT of G

with respect to Kr and the closed-loop system shown in
Fig.2.1, I?r (z,w) represents the transfer matrix from w to z

of G.
Kr

W
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Fig.2.1 Closed-loop system G with H. controller Kr

2.2 An approach to the reduced order H. control
problem

Let Kr be assumed to be the resultant reduced-order
controller obtained by the application of proposed controller
order reduction procedures to the controller K. Then, the
approximation error is denoted by K — Kr, and Kr could

be expressed as Kr = K—(K—Kr).
Furthermore, if the relation
E=wxw;l, R =w w1 2.22)
Uu y y - "u y 1) oo
are defined by the suitably selected nonsingular constant

weighted matrices W, emmmez,Wy eiszxPz, and

the relation K — Kr = Wu_l(K - Kr)Wy_1 is regarded as the

weighted uncertainties, the closed-loop system Igr in Fig2.1
K-Kr
can be modified to the closed-loop system G f , where

K-Kr
G é’ represents the lower and upper LFT of G with respect

to K and K- Kr and the closed-loop system shown in

Fig.2.2.
(K - Kr)=W,\(K - Kr)W,? F
Gy z
3 4>
{ L 4 72}2
4 Auy: . JA
simik i
U +-=Y1 y Y

—Kr
Fig2.2 Closed-loop system Gf

o

Thus the following theorem is given.

<Theorem 2.1>
The reduced order controller Kr(= Wy, I?rWy) satisfies

K-Kr K-Kr

? € RH,,, GK4 ( "lz,w) <1, (2.2.3)
then it satisfies
§ €RHy, ‘ I (z,w)“oo <7. (2.2.4)
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[ proof ).
K-Kr
The system G i ivalent to the system G by the
ys lé is equivalen VS £ y

previous statements.

Under the assumption that K — Kr € RH,, we have the
relations

2
2
.l = Ca (2. "")‘”Gft (2400 4 ) 4 \
2
= GA(zA,w)w+GA(zA,MAXE—Er)yA
K K 2
2 2
< GA(zA,w)w + GA(zA,AuA)(I?—I-(-r)yA
K 2 K 2
2 2
<16 4(z4.w) M; +16 4 (z 404 JE-)| b 4 ”Z
K © K ©
2.2.5)
and
2 [y : -1 |2 2
= = . 2.2.6
] I o S
Therefore, if the following relations hold
Gé‘(zA,w) _<h GIé(zA,AuA)(I?—I?r) <t
227
then we get
2 K-Ki
”y _lz” < "wl g yie. || G4 r(z,w) <y, (2:2.8)
2 )4 ©

and, we also arrive at the following result

Glé(yA,AuA)(I?—I?r)

[o o]
G, (y—lz,AuA)(I?—I?r)
K

: Gé(yA,AuA)(I—{——I?r)

o0

<1 (2.2.9)

Glél(zA’A”A)(I?-E’)

o0

K-Kr
Therefore, we are able to conclude that G)é € RH,, from

the small gain theorem.ll
Thus the following theorem is given.

< Theorem 2.2 >

K-Kr
For the closed-loop system Gé in Fig. 2.2, if the
conditions
(f-—l?r) € RH,, Gé’(zA,w) <1,
® (2.2.10)
Gf(zA,AuA)(I?—I?r) <1
o o]
or
(I?—I?r) €RH, GA(zA,w) <1,
K ® (2.2.11)
G 4(zq00u,) <1, |K-Kr|, <1
K ©
are satisfied, then
g €RH, “ [ (z,w)”w <7. 22.12)
[ proof ].

This theorem can be straightforwardly verified by the
previous statements in this section and theorem 2.1, so the
proof is omitted.

From Fig. 2.2, we can recognize that Wy,W;‘ have the

following properties.

1). Wlng 0 G 4 (z 4 ,w) < 1, because
y K ©
. . -1 .
lim |G ,{z ,,w = __lim ”G(y 4 w)” <1l
A A » »
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2). _lim =0.

. 2.2.14
W, —0 ¢ )

Gléi(zA’A"A)

(e e}

3). W, has no influence on

Gf(zA,AuA)(I?—I?r)

(2.2.15)

]

4).
S =

= lim

-1 -1 _
- Wu,Wy—>ooHW“ (k- xr ), ”co =0

(2.2.16)

Using these four properties, we can establish the following
algorithms from theorem 2.2 to solve the reduced order Ho
control problem.

Algorithm.1
Reduction approach with constant matrix weights

STEP 1. Find W, with the possibly biggest ”Wy ”w satisfying

GA(zA,w)~

K

<1.
[o.¢]

STEP 2. Find W, with the possibly biggest W ||, satisfying

<1.

G}f‘(ZA,AuA)

0

STEP 3. Find r(<n )-th order controller Kr such that
||I?—I?r||c° <], (I?— I?r) €RH .

STEP 4. A reduced order H., controller is given by
Kr =W, KrWw), .

Algorithm.2 Frequency weighted reduction approach

STEP 1. Find W, with the possibly biggest ”Wy Hw satisfying

GA(zA,w){

K

<1.
o]

STEP 2. Set W,, = I, because of eq. (2.2.15).

STEP 3. Find r(<7 )-th order controller Kr such that
qu(zA,AuA)(I?_Kr)

(I?— I?r) € RH

<1

0

STEP 4. A reduced order H. controller is given by
Kr =W,Krw, .

3. Example

u(t) + wi(t)

Fig. 3.1 DC Motor

The DC motor shown as in Fig. 3.1 is described by

d x4(1) 0 1 0 xl(t)
—|x,()]|=]0 -D/J K, /7 x5 (1)

Ulxs)] L0 -KeiLy -Rg/Lg )| %300

0 o o 1
+ o o I::l((’t))] +| 0 |u@)
1/L, 02 1/L,

x1(1) ¢
y®)=[1 0 o] x,(0)|+]o ][:1((3)}
x3(t) 2

-

(.1)

where, u(?) is the armature voltage, x,(¢) the angular, xx(?) the
angular velocity, x3(f) the armature current, wy(f) the
disturbance, w,(f) the sensor noise, R, armature resistance ( =
1[Q]), L, armature inductance ( = 5S[mH]), J the moment of
inertia ( = 0.02[kgm]), K, torque constant ( = 1[Nm/A]),
K. counter emf constant ( = 1[Vsec/rad]).

Then, the model of the DC motor can be written
numerically as the generalized plant by the appropriate
selection of the equation of the equation of controlled output
vector z(t ) ;
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Fig. 3.4 The time response of u(f)

Here, the balanced truncation [6] and the frequency
weighted balanced truncation [7] are used respectively to the
algorithm 1, and the algorithm 2.

4. Conclusions

We have proposed the reduced order H. controller
synthesis employing frequency weights deduced from the
closed-loop system which regards the controller order
reduction errors as uncertainties in the plant, while the
resultant reduced order H .  controller guarantees
prespecified H. control performances. The verification has
also been demonstrated by the illustrative example.

This approach will give the possible fonndation for the
provision of practical applications.
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0 1 0 0 o 0
x(t)={0 0 50 [x(@)+| 0 Ofw()+] 0 ()
|0 ~200 -200 200 0 200
1 00 0
01 0
Giz(t) = 00 1 )+ 0u(t)
0 00 1
y®=[1 0 ok +[0 1w

(3.2).

The 3rd order H.. controller K, given by the central
solution such that

Rty [g e <r(-17 33
g <RHeo, |G (W) <r(=17) (33)
for the (3.2) is
09920 12048 -02629 15168
i()=| 03871 10819 48816 [r.(r)+| 05919 [y(F)
-23916 —40332 29031 -0.7597
u(t) =[-11960 -10107 -065021}x(r)
(3.4).

This controller internally stabilizes the closed-loop g , and

-

The reduced order H.. controller Kr which guarantees
(3.3) can be found using the methods proposed in this paper.

The reduced order H. controller, obtained by the
application of algorithm 1 with W,=0.04, W,=1.11 to the
central solution, is

<11037.
)

. {xrl(t) = ~123009x, (¢) - 4.0797y(¢) 65

u(s) = 2.7219x,(¢)

This controller has 1st order, and internally stabilizes the

G
Krd

closed loop Igl’ and gives <11023.
oo

The reduced order H.. controller, obtained by the applic-
ation of algorithm 2 with W,=0.04 to the central solution, is

{x,z(t) = ~12.0888x,, (1) + 0.6145)(r) 6
3.

2
u(f) = ~17.9090x,,(t)

This controller also has 1st order, and internally stabilizes the

Kcr;2l <1.0931.
o

The Gain diagram of the closed-loop system are shown in
Fig 3.2. Time responses of the x(f), x2(f), xs(f) in the
resultant closed-loop system are shown in Fig 3.3. Time
responses of the control input u(¢) in the resultant closed-loop
are shown in Fig 3.4.

closed loop Ig 5’ and gives
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Fig. 3.2 The Gain diagram of the closed loop system
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Fig. 3.3 The time response of x;(t), x2(t), x3(t)
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