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Abstract
In this paper, we present new control method for robot
The can be the
implementation of minimax with  H,
via LMI the
robustness and to obtain the exact tracking performance

manipulators. design objective
controller
performance approach to guarantee
for robot manipulators with system parameter uncertainty

and exogenous disturbance.

We show that the Algebraic Riccati equation (ARE) .

which is needed for the construction of H,, controller can
be recast into the Algebraic Riccati Inequality (ARI) and
the optimal control gain can be obtained by convex
optimization method. Then, we will apply the proposed
controller to rigid robot manipulators for verifying the
performance of our controller.
1. Introduction

Since the last several decades, a great deal of
researches have paid attention to the motion control of
robot manipulators[1]. There are a lot of control
approaches using the conventional control theory for the
linearized model of rigid robot system[2]. Especially,
Johansson showed that the tracking problem of robot
be the
optimization problem and the optimal control input value

manipulator can converted to quadratic
can be obtained from the solution of algebraic Riccati

equation which is derived from Hamilton-Jacobi
equation[3]. To guarantee the robust control performance
for robot systems with the perturbation of linearized
system model and exogenous disturbance, Chen proposed
state-feedback  Ho,

control performance for the combined disturbances of

control which shows the stable

system[3].
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However, the cost function used in the conventional
controller did not consider the overall system dynamics
appropriately and the solution of algebriac Riccati
equation have the limitation that can not deal with the
dynamic features of system posed by various disturbances.
From this motivation, we investigate the new derivation of
the solution of the nonlinear Riccati equation based on the
new cost function which take the overall features of
system in order to obtain the better control performance.

To derive the solution of Riccati equation efficiently,
we take the convex optimization method i.e. Linear Matrix
Inequalities(LMIs)  which
considerable attention for control analysis and design{4].

recently have received
A large number of control design problems can be
formulated as LMIs.[S] Especially, the ARE for H,
control problem can be converted into an ARI and into a
LMI due to the bounded real lemma. Such problems can
be solved in a time that is comparable to the time required
to solve the same ARE[6].

In this paper, we show that the quadratic optimization
problem for robot manipulator can be recast as convex
optimization problems that involve LMIs. To solve the
proposed LMIs problem, we introduce the scaling
parameter and recast the proposed LMI problem as the
generalized eigenvalue problem (GEVP). By these process.
we can design the LMI-based H, controller for robot
manipulator which has the robustness and exact tracking
performance for parameter uncertainty and exogenous
disturbance. Also we apply our proposed controller 1o a 2-
link robot manipulator. Through computer simulation, we
will verify the performance of the proposed controller for
robot manipulators.



2. H_ Model Reference Control and Problem
Formulation '

2.1. Model Description for Robot Manipulator
The dynamic equation for N-link robot manipulators is
given by
M(q)q+C(q.9)q+G(q)=7 M
where ¢ is the vector of N-link coordinates, 7 eR" is the
vector of the externally applied torque along the directions
of their q,
M(q)eR™" is the positive definite symmetric inertia

corresponding generalized coordinates

matrix, C(q.q)q is the vector grouping the Coriolis,
centrifugal forces which is the skew symmetric and G(g)
is the gravitational forces.

Since the practical robot systems contain the parameter
uncertainty of the plant model and the external disturbance
inevitably, it is important to consider the effect of the
system performance due to the plant uncertainty and the
external disturbance. So, we should consider the dynamic
equation taking into these effects for real robot systems as
the following equation

[Mo@+am@ki+Ico@d+aC@ ki,
+[Go(9)+ AG(@)=7+w @
where w is the finite energy exogenous disturbance,
My(q), Col(q.q), Go(q) are the nominal system model,
AM is the uncertainty of the M(¢g) due to the
changes of load, AC and AG are the perturbations of
Co(q.q)g and Gy(q)due to the changes of the total load.

Therefore, The total uncertain disturbance of system
can be combined as

6 =-(MM(q)q+AC(q,9)q +AG(g)—w) €)

By using of Eqn. (3), Eqn. (2) can be showed as the

following nominal dynamic equation.

Mo(q)G+Co(q.9)9+Go(g)=1+6 C))

It is assumed that the desired reference trajectory for
system is generated from the following reference model

Gr + Kyq, + qur =K,r (%)

where ¢, is a twice continuous differentiable reference
trajectory position, 4, and 4§, are the corresponding
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velocity and acceleration with some bounded driving
signal 7.
The state tracking error is defined as

HiRe

Then, The tracking problem of robot manipulator with

©)

X

uncertain disturbance can be reduced to the regulation
problem of error state X . Using Eqn. (5) and (6), the state
equation for the error state X is obtained as the following

form
X = Ap(%,1)% + Bp(%,t)u+ Br(%,1)d 0
where
. -1 —MO(q)CO(qrq) 0nxn T
T~ L0 - - 0
L7 -1,
—~ -1 Inxn —1
Br(%,t):=T; 0 My'(q)
nxn

di= Mo(q)Ti1 My (q)8

Then, control input u is given as
u:=[M(q)C(q.4) ]{;’} M(q)Tx +C(q.4)T%  (8)
1

The matrix 7; is introduced via the following state-
space transformation of ¥

B o

Since the disturbance of system in Eqn. (7) is uncertain,

P
I

Q) Q-

hxn

we can take the torque for robot manipulator with just
nominal system parameter. From Eqn. (4) and (5), we get
the applied torque 7 as the following equation.

r=My(g)d, —Ti1'T1q — Ty Mo(Clg, )BT TyX ~u))
+Co(9,9)q +Gy(q)

where

(10)
B= [Inxn

Onxn]l

2.2. Problem Formulation with H:o Performance

In order to cancel the effect of disturbance for robot



manipulator, The H, control problem use the following
performance criterion including a desired disturbance
attenuation level y for the tracking error dynamic equation
as

2 CFT 0G0+ L uT Rup)dt
VGE@®),0)= min max —2 2 <2 (1D
w()eL, 02d()el,

Ii(%dT(r)d(t))dt

which has the initial condition X(0)=0.
(1Y) is
problem(7]. To solve the minimax problem, we define the

Eqn. equivalent to the H, minimax

following cost functional as

JE(t), udt) =1 [ L(Z(s), u(s), d(s) yds  (12)

L(Z,u,d) = %;T (NOF (1) + —;—uT (D Ru(t) - % y2dT (0d(t)

By introducing the value function
V(Z(f),t)=minmax J(X(t),u,d,t) , the performance criterion

of Eqn. (11) is equivalent to
V(%(0),0) = min max J(X(0),1,d,0) <0 , X¥(0)=0 (13)

where the V(X,t) must satisfy the following terminal
constraint

V(%(0)o) =0 (14)

Therefore, the performance criterion (13) is achieved by

the optimal control input u  and the worst case
disturbance 4" . The solution of the performance criterion
of (11) needs the following minimax Bellman-Isaacs Eqn.

[8] as

CHEL) _ g (o’V(J?,t))T;
7 mmmax{L(x,u,d)+ & x

(15)
1= minmax H(X,u,d,t) := H*('f,u*,d*,t)
where H is the Hamiltonian.
The value function V(x,t) is chosen as
V(D) = %)?TP(i,t))? (16)

where

P(R,t) = T, ST,

and S is the positive definite diagonal matrix.

After some algebraic computation, we can obtain the
following algebriac Riccati equation from Eqn. (15).

PG.0) + PG 04, (R, + AL R, DP, 1)

1

17
- P,0)B, (%, t)(R_l - —21]3} & DPE,H+Q=0 n
4

where (g __17 1) is to be positive.
Y
Finally, we provide the main result of this section.

Theorem 1: Subject to the perturbed error dynamics (7),
let it be given nonsingular T,. The H, control problem
(11). is solvable if y?I>R and the algebraic Riccati
equation (17) has a positive definite symmetric matrix
P(xX,t). The optimal control u' and the worst case

. * .
disturbance d are given as

u' =-R7'BIPE,DX, W =;—ZB;P(f,t)7c (18)

Also, from Eqn. (10), the corresponding applied torque

" which guarantees the desired H, performance is given by

o' = Mo(@)(d, - T Tl = Tt Mo(C@, B PR - g,
+Co(9:9)9 +Go(q)

Proof: See the reference [3]

3. LMI-Based H, Controller

In this section, we show that the algebrai Riccati
equation (19) can be recast as generic LMIs problem
through simple variable change and the optimal Riccati
gain can be obtained by the convex optimization
method.[8]

By using Eqn. (16), Eqn. (17) can be rewritten as

SGE,0)+SE,DAG, D+ ATE 0OSF, 1)

- ~ (20)
~S&,NDBGE,ORIBTF 0NSE N+0 =0

- ~ -1 _
where -1 = (R —Lzl) , Q=1{ QT;'
4

For given disturbance attenuation level y, the control
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problem can be solved if we can find S(x,r) that
satisfy the following inequality ,

S(x,DAG, D+ ATEDSGE, 1)

- ~ (@D
- S, 0B ODR'BTE,HDS8F,0+0 <0

However, Eqn. (21) can not be recast the generic LMIs
problem since R must be positive definite matrix.

To satisfy the LMI constraint condition, we can change
variable S(%,7) to X7'(%,1). Through algebraic process,
we can derive the following inequality from the Eqn. (21).

AGDXGE D+ XF,DAT(E,D

~ ~ (22)
- BE,DRBT (X, 1) + X(X, 00X (%,1) <0

which is the generic LMIs and is equivalent to the
following equation.

AGDXGH+XGENA'GH-BENR'B' G XE D)
XG.H o'

<0(23)

To solve Eqn (23), we introduce new auxiliary variable
Z satisfying S(x,1)<Z(x,t) and Tr(Z)<A. With the
variable Z, we obtain the following analysis result: A is
stable and min max J(x(0),u4,d,0) <0 iff there exist
symmetric X = S~ and Z such that

XGEDAGE D+ A GNXGEH-BEHOR'B'(% ) AR, D) <0
AG1) -g’
S N 24)
I X (
trace(Z)< A

Then, we can solve the new LMIP by generalized
the
problems. The new LMI constraint can be summarized as

eigenvalue minimization among generic LMI

LMIP : minimize A subjectto I'(1,X,Z)>0
[(A4,X,Z) = diag(I, T, T3)
and the block diagonal matrices are
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L(4.X.2)
_ —XGEDAG - ATGHDXE,D+BEDRBYR, ) AGD
A1) o°
zZ 1
Z)= 0 25
Lh@A,X,2) [1 X}> (25)

(A, X,Z)=—trace(Z)+ A

4. Computer Simulation

For computer simulation, we consider the 2-link robot

manipulator as shown in figure 1,

Fig. 1. The 2-link robot manipulator

The parameters of dynamic equation for 2-link robot

|

(26)

manipulator is given as

Mo(9) =[ (my+my) I} myly 1, (5y5, +¢5¢;)

2
myl 1, (515, +cicy)  myl;

- 0 -9,
Go(q)y=myl 1, (cy5;5 -5105) .
-q, O

%mmﬂﬁﬁ}

Golg)=
-m2 11 8Ss

where ¢ =cos(q1), si=sin(q1), m=1, m=10, L=Ib =1,
and ¢4(0)=0, §2(0)=0 ¢,(0)=-1,4,(0)=-1.
The parameters of the desired reference trajectory in
Eqn. (5) are given by
7, =[0 0], Ky =0pns Kp=Kr=lw Q27)

Suppose that the plant perturbation and exogenous
disturbance are given by



& |56 +5(s152 +e10a ip ~5(cyp =512 )d7 G ~5gsp +wy
5| (28)

w . .2,
5G2 +5(s15p +c10p )1~ (c15p — 5162 )d5G1 —Sgsp +wp

When H, controller is constructed by the proposed
LMIP under the condition of desired disturbance
attenuation level y= 0.2 and y = 1, the transformation
matrix Ty is given by

0.5 0 50

0 0505
Ty =

0 0 10

0 0 0 I

The convex optimization computation is performed
with the function gevp from the LMI Control Toolbox.
Through the computation, the optimal Riccati control

gains are obtained as

3.5118 2.7239 0 0
2.7239 3.2273
Casel: S§ = 0 0
0 0 5.7950 0.3183
0 0 0.3183 5.7618
3.3434 2.6318 0 0
2.6318 2.0686 0 0
Case2: P =

0
0

0
0

5.6190 0.2343
0.2343 5.5946

Figure 2 and 3 show the control performance of the
angular positions ¢¢(f) and the angular velocity ¢, (?)
for case 1 and 2. It is shown that the proposed control
method can control robot manipulator efficiently with
various disturbance levels. From the simulation results, it
is shown that the proposed LMI-based controller can take
the optimal Riccati solution by convex optimization
method and the controller can achieve the exact tracking
performance to the desired disturbance attenuation level

for robot manipulator.

5. Conclusion
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In this paper, we propose the LMl-based H,
controller which have the exact tracking performance for
robot manipulator with system parameter uncertainty and
exogenous disturbance. It is shown that the nonlinear
Riccati equation can be recast as the LMIP constraints and
optimal solution of Riccati equation can be determined by
the proposed LMIP. Since LMI constraints deal with the
overall features, the explicit solution can be obtained.
Through computer simulation, we can verify that our
proposed controller shows exact tracking
than the H,

controller for 2-link rigid robot manipulator and also

more

performance conventional robotic

satisfies the desired disturbance attenuation levels.
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The angular position q1(t)

2t
-3
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t
@ q1()
The angular velocity dot q 1(t}

3 T ™
2}

®) 4,
Fig. 2. The angular position of g4(¢) and velocity g, (t)

with disturbance attenuation y =02

The angular position q1(t)

@ q4(1)

The angular welocity dot q 1(t)

3 —_—

®) ¢1()
Fig. 3. The angular position of g,(¢) and velocity ¢,(?)

with disturbance attenuation y=1
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