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Abstract
Robots utilized in the field of welfare or agriculture should be
light in weight and flexible in structure. A pneumatic actuator
has properties such that it is more powerful compared with a
motor of same weight, and that it is flexible, clean and
unexplosive.

In this paper we propose a new structure of the pneumatic

actuator with two-degree-of-freedom. By using proposed
pneumatic actuators, we can easily construct multi-degree-of-
freedom pneumatic manipulators. Here we constructed a
fourteen-degree-of-freedom pneumatic dual manipulator. The
performance of the dual manipulators is confirmed through
experiments for ball-handling with impedance control. In the
experiments several control schemes, including the
decentralized control and the simple adaptive control (SAC),
were used. The results show that a flexibility of the
pneumatic actuator is appropriate to accomplish the
coordinative motion of the right and left arms of the robot.

1. Introduction

The pneumatic actuator has properties that are more
powerful compared to a servo-motor of the same weight. It is
also flexible, clean and unexplosive. However, it has
nonlinear properties because of its compressibility of air and
long delay of response. Therefore, it is difficult to design a
controller for the pneumatic actuator. In spite of such
difficulties, studies with respect to the pneumatic actuator
have been considered from various research points of view in
order to improve controllability of precision [1],[2]. As
second concern is that a structural idea is required to construct
manipulators which have more than 6-DOF without losing
required moving range since the air cylinder which is most
generally used in pneumatic actuators basically has one
degree of freedom.

In this paper, we consider both the structure and the control
system of the manipulator using pneumatic actuators for
applying it to new fields of agriculture or welfare. We propose
a 14-DOF pneumatic dual manipulator with two 7-DOF arms,
which is constructed by connecting 2-DOF pneumatic

actuators in series. This 2-DOF pneumatic actuator that is free
for rotation and bending consist of two basic components
which will be called “twin pneumatic cylinder”. We apply
impedance control to the proposed 14-DOF dual manipulator
and confirm their control performance by an experiment of
ball-handling. Generally speaking, coordinate motion of dual
manipulators réquire exact force control of each end effector.
In the experiment, we show that a flexibility of the pneumatic
actuator is appropriate to accomplish the sufficient coordinate
motion by impedance control of each arm without coordinate
control.

This paper is organized as follows. In Section 2, the
structure and impedance control model of the proposed 14-
DOF pneumatic dual manipulator which has two 7-DOF
arms are presented. In Section 3, we propose a 2-DOF
pneumatic actuator and show the relation concerning force-
balance of air cylinders. The control law for the subsystems
of 14-DOF pneumatic dual manipulator is derived in Section
4. The position-based impedance control law is used for each
arm. The position control for the arm is accomplished by the
simple adaptive control (SAC) method stated as follows. That
is, each arm can be divided into a two-input/single-output
subsystem including a twin pneumatic cylinder and four-
input/two-output subsystems including the 2-DOF pneumatic
actuator. To realize those two types of subsystems in the
form of single-input/output system and two-input/output
system, respectively, we impose a simple assumption on the
pneumatic control part. Finally, in Section 5, we show
experimental results of ball-handling by the 14-DOF
pneumatic dual manipulator with proposed control system.

2. 14-DOF Pneumatic Dual Manipulator

A Structure of 14-DOF Pneunmatic Dual Manipulator

The 14-DOF pneumatic dual manipulators proposed here is
constructed by connecting one twin pneumatic cylinder and
three 2-DOF pneumatic actuators in series. Fig.1 shows the
external feature of the 14-DOF pneumatic dual manipulator and
a structure of the left arm is illustrated in Fig.2. The right arm
is symmetric to the left one with respect to XZ plane of



Cartesian coordinate. As shown in Fig.2, a rotation( &) in the
shoulder corresponds to the twin pneumatic cylinder and other
6-DOF corresponds to three 2-DOF pneumatic actuators.
Table 1 shows the length for each part in Fig.2.

Table 1 Length of Left Arm
Lil |LI2 {LI3 {Li4 {LI5 |Ll6

225 1176 |810 {140 {517 }430

L7
140

L8
82

Length
<mm>

Impedance Control of the Arm

Here we consider impedance control of ball-handling using
the proposed 14-DOF pneumatic dual manipulator. In the
handling control using dual manipulators, generally, it is a
problem how each arm should be coordinated during the
manipulating tasks. If high stiffness manipulators are used,
output forces of each arm must be controlled exactly. On the
other hand, in the case of using the pneumatic actuator, high
precision position control may be difficult because the
pneumatic actuator has flexibility. However, this flexibility of
the actuator gives some advantages with respect to coordinate
control or force control. For example, for ball-handling, we
can adopt position-based impedance control for each arm
without exact coordinate control [3].

Now, we consider position-based impedance control for
each left and right arm, independently. Generally speaking,
the equation of motion for 7-DOF manipulator except for the
part of the joints is expressed by

= M(6)6+h(8,6)+ g(6)
6= [ﬁ?1 -0, ]TG,. : i-th joint angle
M(@)ER™ : inertia matrix

...(1)

h(0,6)ER’ : centrifugal and Coriolis vector

g(8)ER’ : gravitational vector

T= [1, T, ]T ,T;: i-th joint torque

Further, 6,(t) of the following

impedance model which the joint angle vector 8 in (1) is
required to follow:

consider the vector

M, y.()+D, y.@0)+K,y.()=F" -F
6,()=J"©,)Yn(t) ()

Y. (1) : trajectory of the impedance model on Cartesian

coordinateE R°

Y.() =y, -y,(), y,(t) : trajectory of the reference model

on Cartesian coordinatec R ¢

M_,D,, K, : parameters of the impedance model€ R *¢
F " : reference forces for end effectore R®

F : real forces at end effectore R®

J*(8,,) : pseudo-inverse Jacobian matrix €R™°

Position control is used so that the joint angle vector 8 will

Fig.1 Proposed 14-DOF Pneumatic Dual Manipulators
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Fig.2 Schematic Diagram of Left Arm

follow 8, (t). However, eq.(1) is a complex nonlinear

equation. Thus we divide each arm into several subsystems as
shown in Fig.2 and apply a decentralized control technique
to the position control of each subsystem [4].

Eq.(1) can be divided into the following subsystems.

v =MI0)87+g'0)+q'(6,0,0),j=1-4

7’ : joint torque of j-th subsystem, ¢! €R', 7/ |

...(3)
ER?

jz2



6’ : joint angle of j-th subsystem, 8'€R', 07|, ER’
M7 (8) : jj-th minor matrix of M(6)

MU @)ER M @B)],, R

g’(6) : j-th element vector of g(6)

g @ER, g’ (0)],,,€R°

j=2

where,

.. 4 oy .
q/(6,6,0) = Z{Mf‘(a)e *}+h'(0,) " (4)
k=lknj

h(B,é) : j-th element vector of h’ (B,é)
hl(*)emlahj(*)hﬂemz

M *(8): jk-th minor matrix of M ()
Mlk (e)emlxz’Mkl(e)ESRZ)d

Mi*(a)lj emz‘z’é"ﬂ =k1“'0k—10k+ln_04]

22,k>1

q’(6,0,0) gives interconnection between subsystems. The

subsystem for j=1 includes one twin pneumatic cylinder. In
the next section, we will describe a 2D-O-F pneumatic
actuator that constructs subsystems.

3. 2-DOF Pneumatic Actuator

A Structure and Control System of 2-DOF Pneumatic
Actuator

A 2-DOF pneumatic actuator is illustrated in Fig.3 and a
pneumatic control system for twin pneumatic cylinder is
illustrated in Fig.4. As shown in Figs.3 and 4, a pair of
cylinders are connected by two sprockets and a chain
antagonistically. An air tube connects cambers which have a
push-pull relation in each cylinder. The valve angle regulation
using the signal of corresponding pressure sensor controls
camber pressure by a PID control algorithm on a specialized
micro-computer (Z80) board.

Dynamics of Twin Pneumatic Cylinder

In this subsection, we derive the dynamics of the twin
pneumatic cylinder. As stated above, Fig.4 shows the structure
of the twin pneumatic cylinder. Here, output forces F, , F, of
each cylinder are represented by

Fa = Aa2P2 ‘Aalljl + (Aal -AaZ)})a +A1Pa
F, = ApF - A, P, + (A, - Ay)P, +AF,
P, : Atmosphere pressure

Here, P, =AP, + P, ,P,=AP, +P,, + AP,  ,A, = A, +A,,,
A=A, +A, A=A +A,, AP,is variable to pressure, P,
is initial pressure of P, and AP, is the difference between
P,, and P,, . Further suppose that we use cylinders on the
same specification, so that A, = A, , A = 24, . Finally, we can

obtain the following expression with respect to the output
torque of the twin pneumatic cylinder.

T = ArAP, - Air(AP, + AP} + ArAP,

...(5)

...(6)

Differential
O Gear

S
6:

Fig.3 Schematic Diagram of 2-DOF Pneumatic Actuator
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P. : Pressure of Camber, A.: Cross-sectional Aria,
&: rotary angle of sprocket,
r: radius of sprocket

Fig.4 Twin Pneumatic Cylinder

Dynamic Model of Subsystems
For the subsystems(j=2) in (3), we will derive the equation
of motion including pneumatic actuator. Let 7, be rotational
torque and 7z, be bending torque corresponding to &,
and 7, , respectively, as in Fig.3, then, we obtain the
following relation for the subsystem.

¢’ =[rbj ,t,i]T’ei =[0bj B,j]T,sz

-..(7)
As shown in Figs.3 and 4, the 2-DOF pneumatic actuator is a
four-input/two-output interconnected system of which inputs
are command values A P; (i=1,:*,4) and outputs are
rotational and bending angles &,, #, of the differential
gear. Then we first consider the transform of forces at the
differential gear and derive the equation of motion for each
subsystem. Figs.5 and 6 illustrate the transform mechanism of
forces at the differential gear. Here, torque 7, and 7, are
inputs for @ and @ respectively, and rotational and
bending angle &,and &, of @ are outputs. Further, f, ,
f, are forces which effect between these wheels. Here,
the same standard wheels are used and four cylinders have
the same specification. Equations of motion for each twin
pneumatic cylinder with a wheel in the differential gear are
described from Fig.6 as:

Isesl =‘rsl —flr—Clesl—Fsl

1,802 =1, - for-c,02-F,

I.=1, +mr,F, =F,+f,r,

...(8)

I, : moment of inertia for wheel and sprockets



m, : mass of cylinder rod, chain and others
F,, : frictional torque of wheel
f..: friction forces of cylinder, c, : all of viscosity coefficient

On the other hand, from Fig.5, rotational and bending torque
r,and r,are represented as

7, =(f2 -fl)r-cré’_Frr

Tw=(fi+t f2)r-csp-Fp (9
¢, viscosity coefficient, F,,:frictional torque

Since, 4, , 8, satisfy the following relation:

9:1 =0b —or ’0:2 =er +8b ."(10)

and we can assume ¢; =C, because cylinders and wheels
have same standards. Therefore, from (6),(8),(9) and (10),

T, = Ar(AP, + AP,) - A,;r(AP, + AP, + AP, + AP,)
=21, ;9'1,—(c1 +02+Cb)éb
-F,-F,-F, +Ar(AP, + AP,)

T, =-Ar(AP, — AP,) + A,r(AP, + AP, - AP, - AP,),
~20 0,-(c, +¢, +¢,)8

+Fy; —F, - F, - Ar(APy, - 4P,) =+(11)

are obtained. Finally, from (3), (7) and (11), the equation of
motion for j-th(j=2) subsystem is given by

8/ =-M70)Y'V/ 0 + M7 (B) R'u'(t)+w!(t) - (12)
uj(t)=[A[)lj AP} AP, AP4J]’

R = —Aljrj (Ai—Alj)rj —Aljrj (Aj _Ali)ri
Alrl (A=A A (AT =AY
jiigy-| ™ @+2U 0
0 my"@)+21]

wi(ty=M1@)'(f' -g'(0)-§'(8,6,0))
§'(6,6,6) =4 (8,6,0)+[m," 0)8] m,"©)6] T
m,,” (8) :Im-th elements of M ¥ (6)

v ¢ +¢,) +¢,) 0
- i i i
0 ¢ +¢c, +c,

f}'

Fslj ‘Fszj ‘Fni "Aljrj(Aonj ‘prj)

_Fslj "Fszj —Frbj +A1jrj(AI')2oi +AP40j)]

As the result, we can see from (12) that the subsystems of j=
2 are the four-input/two-output nonlinear systems which have
interactions and disturbances. Similarly, for the subsystem of
j=1, we can obtain the two-input/single-output nonlinear
system.

Oy

Fig.5 Transform of Torque and Forces at Differential Gear
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Fig.6 2-DOF Pneumatic Actuator

4. Design of control System
In this section, we consider a control system for subsystems
of j22 represented by (12). Here, we impose a following
assumption in order to make the number of inputs equal to the
number of outputs.

[Assumption 1]

Response of pressure control system to adjust air pressure in
camber of cylinder is sufficiently fast compared with the
command value of corresponding pressure.

From Assumption 1, we can ignore the dynamics of air
pressure. Thus, with respect to pressure variable AP’ and
the command value of pressure AP’ (i=1~4), AP’ = AR”

holds. Further, let us define new variable Ade' (i=1,2) as
follows:

APclj' =_AP1]" =AP2I.,APC2P =‘AP3J‘ =AP4P =+ (13)

Eq.(13) implies that if the command value of pressure for
camber at the side of P, in Fig.3 is defined as AP, then, the
command value of pressure for camber at the side of P,
becomes - AP . Namely, the number of inputs for a twin

pneumatic cylinder becomes one by defining AP 1t

follows that subsystems of j=2 can be represented by the
following two-input/output system:

g’ =_A"'l'jj(0)—lvj 0j+ﬂjj(3)—lﬁi;;j(t)+wi(t) --(14)
Alri  Aipi

R
_AipT Alpi

} » i.“j(t)= [Apclj‘ APczj‘ ’

As eq(14) has still interactions and nonlinearlites, one



needs to consider the multi-variable and/or robust control
system for controlling the above subsystems. Now, we consider
to apply the simple adaptive control (SAC) method to (14).

Here, ¢q.(14) without disturbances w’(¢) can be described
by two-input/output four order state equation as follows:

x."(t)=ijj(t)+B"uj(t)

Y (@) =Cx’(1) ~(15)
) . o T . L
xj(t)=I:0rJ 6, 6, 9:,’] ,"’(t)=[APJ APclj]
. 0 . I 0 N
Al =|-a) 0 -4’ 0 | Bi-|-b’ b’
0 -a’ 0 -af b, b,

C=[I 0],a/ a,),b7 b0

Generally, in order to apply the SAC to m input/output n order
systems, the following four conditions are need [5].

[Condition 1]
The transfer matrix of the plant is minimum-phase.

[Condition 2]
The relative order of the plant is m.

[Condition 3]
CB>0

[Condition 4]
. A B
(i) det =0
C 0

(ii) reference input u, (¢) is bounded and u, (¢) is bounded
and piecewise continuous.
(iii) 42, is the solution of the matrix equation

A Bl[Q,, £, I

C 0|2, 2,
where no eigenvalue of 2, is equal to the inverse of an
eigenvalue of A (:coefficient matrix of reference model )

Eq.(15) does not satisfy above conditions of 2 and 3. Now, we
introduce the following PD compensator H(s) to u’(t):

J J J i
H(s) = d1‘s+k1A d?s"'k? +-(16)
d)s+ky’ d)s+k,’
Here, if k,~k, and d,~d, satisfy next relations,
kikS —kjkJ <O,kidi+d k/—(kidi+d,k/)<0
didi—did,/ <0,k k/—kjki<O
dy—d’>0,d,/d,)—d ' d />0 =-(17)

[Condition 2] and [Condition 3] are satisfied. With respect to
[Condition 4], we suppose that (15) satisfies the condition.
Consequently, we adopt SACs with PD compensator H(s)

for each subsystem of j= 2. Similarly, for the subsystem of

n=r,l : Right or Left Force
. Data
Yua () ¥ (0) Impedance Modet F,
m— .
My, Y(®+D,, 5.0+ K,3..(0)=F, -F,
1] 6., PO)
s J(enm) Il
Weac () 9’
2 j n Arm:j-th NG
> SAC % Hi(s)p Subsystem| §
DJs)

Control Block of j-th Subsystem

Fig.7 Block Diagram of Impedance Control for 14-DOF
Pneumatic Dual Manipulators

J=1, we can obtain a single-input/single-output system. On the
other hand, as SAC does not include the integration, the

influence of w’(r), especially the frictional term, might be

appeared. Therefore, we will consider to add the integrator to
the SAC. Fig.7 illustrates the control block diagram of the
position-based impedance control system with SAC loop for
each arm. Here, subscript n implies right arm(r) or left arm(J),

and D//(s)= diag[i}, /s, il,/s]. Here, the reference model of
SACis

x, ()= 4, %, ©)+B,'u,' ()
Yu'®)=C,x, (1) +(18)

and SAC control inputs u; ) ac () are given as follows

u) o ()= Kl (i) ~+(19)
do=le’ =0 wo |

&)=y, ), Ki0)=K,,' )+ K, (©)

K, (0)=-el(z@) I,/
K,'() =-e]@0)zl() T, -
rnPj = FPjT

n

0"',, Knl ! (t)
R T

>0, =r,” >0

5. Experimental Results

Ball-handling control by the 14-DOF pneumatic dual
manipulator has been carried out to confirm an effective way
of applying impedance control discussed in this paper. Fig.8
gives trajectory of end effectors for ball-handling. That is,
lines 4 in Fig.8 are reference trajectory y,,(¢) and
Y. (t) in which the dual manipulator grasp a ball in front and
move it up/down and release it at the initial position. Where,
configuration of both end effectors will be constant through

the trajectory. Parameters of this experiment are given as
follows:

a. Impedance parameters
Right arm
M, =diag[o.1 075 5 10 10 10]<kg>




D,, =diagl09 2.13 142 20 20 20]<N/(mm/s)>
K,, =diagl0o2 1.5 10 10 10 10]<N/mm>
F ' =[0 90 0 * = «[<N>

*Left arm
M, =diag[o1 075 5 10 10 10]<kg>,

D,, =diagfl.5 213 142 20 20 20}<N/(mm/s)>,

K, =diag[l.0 1.5 10 10 10 10]<N/mm>,

F =[x -90 0 = * [ <N>

b. Parameters of SAC and D(s)

*Right arm

0! =001, 0?=01, 0’=02, 0'=02

I,' = diag[0.1,0.1,0.1), I, ™** = diag[0.1,0.1,0.1,0.1,0.1,0.1]

r,' =diag15000.10.1), i} =3

I, = diag[1000,1000,0.1,0.1,0.1,0.1], % =5, i =5

I, = diag[500,300,0.1,0.1,0.10.1], 2 =2, %, =2

r,* = diag[300,300,0.1,0.1,0.1,0.1), i* =2, i’ =2
-6,0,0,0,0,0

o,-s,o,o,o,o]

-6,0,0,0,0,0 ) -5,0,0,0,0,0

0,-5,0,0,0,0] > T AT [0,-5,0,0,0,0]

K, ©0=[-800], K, (0)= [

K, (0)= [

* Left arm
o/ =001, 0} =01, 0} =02, o/ =02

I' = diag[0.10.1,0.1), I, ™ = diag[0.1,0.1,0.1,0.1,0.1,0.1]
I, = diag1500,0.1,0.1], i, =3

I,” = diag[1500,1500,0.1,0.1,0.1,0.1], i2 =5, i3 =5

I’ = diag[1500,800,0.1,0.1,0.1,0.1], i3 =4, i}, =4

I,* = diag[1000,800,0.1,0.1,0.1,0.1], i* =2, i}, =1
S
-5,0,0,0,0,0

K, ()= [0 -7,0,0,0,0

] -3,0,0,0,0,0
» Ky (0)=

0,-3,0,0,0,0

¢. Others
* Parameters of H(s) :

j=1: k, =1.0,d, =0.001
jz2: k) =1k =k’ =k, =1
d,’ =-001,d,’ =d,’ =d,’ =0.01
» Reference model :
A,’ =diag[-20 -20],B,’ =diagh0 10],C,° =1

T

u’(t)=|(-2.0%6," +6,7),(-2.0%6,” +6,”)

+ Ball : diameter:=22<cm>, mass:=3.7 <kg>

Reference of
Right Arm

Trajectory of End ’
Effectors ’

Reference of
Left Arm

Fig.8 Reference Trajectory for Ball Handling by
14-DOF Pneumatic Dual Manipulators

4 A

) .
Fig.9 Experiments of Ball Handling Control by
14-DOF Pneumatic Dual Manipulators

+

+ Initial pressure : Py*3.92X10° <Pa>
+ Calculation of pseudo-inverse Jacobian matrix:[6]

T 0m)=0"J0m) J(0:m)Q T O,,) )" n=r1

Q =diagl20 1.0 1.0 05 05 05 05]

*Sampling time: 10 <msec>

Concerning F.",F,” in a, %’ marked elements imply

that impedance control is not applied to the corresponding
direction. Namely, only position control without impedance
control is applied to the orientation of both end effectors and
the direction of the X axis in the left arm.

Fig.9 shows a time sequence of photographs in which the

proposed 14-DOF dual manipulator was carrying out ball-

handling. The dual manipulator was approaching the ball at



@ from the initial position @, and grasp it at 3. And the
dual manipulator moved the ball up and down at @~®, put
it on the initial position at @, and released it at &, then
finally returned to the initial position at @ (=D) .
Correspondingly Fig.9, position errors e (¢),e,(f) between
of both end ¥, @),y
impedance model y,, (¢), y,,(?)are shown in Fig.10. Here,

e (t) ,e (r) are

trajectories effectors and

e,(t)=3,(O)=Ym@®) =lerx ery ez ],
&)=y, ()~ Yim(t) =[elx ely elz ]

Moreover Fig.11 illustrates forces working the ball from both
end effectors. From Fig.10, it is shown that both end effectors

were following impedance models in errors about *30mm
on the average. The reason position errors (ery,ely) of the Y
axis were large, around 85sec, is that the dual manipulator
released the ball at that time. Fig.11 shows that forces about

60N~ 100N from end effectors worked the ball in the
direction of the Y axis, and that forces about 20N worked the
ball in the direction of the Z axis in order to lift it.

Although the above mentioned tracking errors are larger
compared with conventional manipulators, the dual
manipulator achieved a series of motion in ball-handling
without dropping the ball. Thus, this experiment gives a
possibility that the coordinate motion can be accomplished by
making use of a flexibility of pneumatic actuators instead of
exact coordinate control.

In the following, we will examine briefly an assumption
used in the designing control system for subsystems of the
dual manipulator in Section 4. It is possible that pneumatic
control by PID using a micro-computer board is
approximately regarded to the first order system that has
about 200msec~300msec time constant for step input from
lkgf/cm?® to Skgf/cm?. As maximum value of pressure
variation in this experiment is about 1 kgf/cm%sec, time
constant of the first order system is 50msec ~ 70msec.
Although we can not affirm immediately from the above
mentioned results whether Assumptions 1 is satisfied in this
experiment or not, considering the achievement of ball-
handling, we can conclude that this assumption is almost
satisfied.

.o (20)

6. Conclusions

In this paper, we propose a 14-DOF pneumatic dual
manipulator was constructed by connecting the 2-DOF
pneumatic actuator and the performance of the dual
manipulator was confirmed through experiment concerning
bail-handling by impedance control with SAC loop. By this
experiment, we could confirm that the coordinate motion can
be accomplished without exact coordinate control by utilizing
a flexibility of pneumatic actuators.

How to guarantee the stability of all signals in the
impedance control system for the dual manipulator from the
theoretical viewpoint has remained a problem that should be
investigated in the near future.

Error<mm>

0 15 30 45 60 75 90 105
Time<sec>

Fig.10 Experimental Results of €,(?)
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50
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Fig.11 Experimental Results of F,
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