E115 Protection of cultured cortical neurons against zinc-induced death by recombinant tissue plasminogen activator

Yang-Hee Kim^{1*}, Seung-Hwan Hong¹, Jae-Young Koh²
¹Department of Molecular Biology and Institute for Molecular Biology and Genetics
Seoul National University ²National Creative Research Initiative Center for the Study of CNS Zinc Department of Neurology University of Ulsan College of Medicine

Recombinant human tissue plasminogen activator (rt-PA) is being used as a thrombolytic agent in brain ischemia. However, rt-PA may be harmful to neurons by potentiating excitotoxic injury. Since zinc neurotoxicity is another key mechanism of ischemic neuronal death, we examined whether rt-PA altered zinc neurotoxicity in mouse cortical culture. Neuronal death that occurred 24 h after 10 min exposure to 300 μM zinc was completely blocked by 10 μg/ml rt-PA added continuously during and after the zinc exposure. This protection was not likely due to the reduction of toxic zinc influx, since fluorescence zinc staining with 6-methoxy-8-quinolyl-paratoluene sulfonamide (TSQ) revealed no difference in intra-neuronal zinc accumulation. Rather, rt-PA attenuated free radical generation and lipid peroxidation, events likely downstream of zinc influx. Consistently, rt-PA also attenuated another oxidative neuronal death induced by iron or H₂O₂ exposure. By contrast, rt-PA did not alter excitotoxin-induced neuronal death. The protective effect of rt-PA was not mimicked by plasmin, the major product of rt-PA; rather, plasmin (30-100 µg/ml) markedly potentiated zinc neurotoxicity. In addition, mild treatment with another protease trypsin also blocked the zinc neurotoxicity, suggesting that proteolytic action may be the basis of the neuroprotection by rt-PA. The present study confirmed that rt-PA can potentiate neuronal injury likely via producing plasmin. However, we have additionally found that rt-PA directly protects against zinc and other oxidative neurotoxicity. These results suggest that certain membrane proteins play important roles in oxidative neuronal injury.

E116 Isolation and Biochemical Properties of Adult Specific Carboxylesterase in Lucilia illustris

Hee Yun Park* and Chong Myung Yoo Department of Biology, Han Nam University, Taejon, 300-791, Korea

Two adult specific carboxylesterases(ASCE-I, ASCE-II) were characterized by their biochemical and enzymatic properties in *Lucilia illustris*. ASCE-I and ASCE-II showed a common optimal temperature, 45°C regardless of the reacted substrates, α -naphthyl acetate, α -naphthyl butyrate, β -naphthyl acetate. The optimal pH of ASCE-I and II were 7.5. The V_{max} and K_{m} values of the ASCEs were varied with the reacted substrate; the V_{max} of ASCE-I was 87.0 μ mol/min/mg protein for β -Na, $42.8\,\mu$ mol/min/mg protein for α -Na, and $33.3\,\mu$ mol/min/mg protein for α -Nb, whereas ASCE-II exhibited $51.6\,\mu$ mol/min/mg protein for α -Na, $42.6\,\mu$ mol/min/mg protein for α -Na, and $33.8\,\mu$ mol/min/mg protein for α -Na, and $1.81\times10^{-4}\text{M}$ for α -Nb, whereas those of ASCE-II were $1.53\times10^{-5}\text{M}$ for β -Na, $2.27\times10^{-5}\text{M}$ for α -Na, and $9.09\times10^{-5}\text{M}$ for α -Nb, respectively. On the otherhand, the denaturation temperatures of ASCE-I and II were of $30^{\circ}\text{C} \sim 40^{\circ}\text{C}$ showing their somewhat highly heat-sensitivity, and the enzyme activities were not detectable above 60°C .