'98 추계학술발표회 논문집

한국원자력학회

AUC 분말의 환원속도에 관한 연구

A Study of Reduction Kinetics of AUC Powder

우문식 · 김용호 · 김연구 · 박진호 · 유재형 ·

한국원자력연구소 대전광역시 유성구 덕진동 150

요약

AUC 분말의 배소 ·환원에 대한 연구를 수소분위기에서 TG-DTA를 사용하여 수행하였다. AUC 분말의 열분해 과정 중 다양한 상 변화 특성을 XRD로 확인하였다. AUC 분말의 열분해 반응 메커니즘은

$$\begin{array}{ccc} (NH_4)_4[UO_2(CO_3)_3] & \to & UO_3 + 3CO_2 + 4NH_3 + 2H_2O \\ & 3UO_3 + H_2 & \to & U_3O_8 + H_2O \\ & & & 3UO_2 + H_2O \end{array}$$

와 같은 3단계로 나타났다. AUC 분말의 배소.환원 속도는 비등온열중량법으로 구하였으며, Data 해석은 Osawa 방법과 Zsako 방법으로 구하였다. 그 결과는 다음과 같다.

Reaction	Mechanism	E(Kcal/mole)
AUC → UO ₃	2 nd nucleation and growth	19.5
$UO_3 \rightarrow U_3O_8$	3 rd nucleation and growth	30.12
$U_3O_8 \rightarrow UO_2$	4th nucleation and growth	31.43

ABSTRACT

A calcination and reduction of AUC has been carried out by using TG-DTA in H_2 atmosphere. Phases of various intermediates obtained during thermal analysis of AUC were confirmed by XRD. As results, AUC was calcined and reduced by three steps as follows;

$$\begin{array}{cccc} (NH_4)_4[UO_2(CO_3)_3] & \to & UO_3 + 3CO_2 + 4NH_3 + 2H_2O \\ & 3UO_3 + H_2 & \to & U_3O_8 + H_2O \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

And, the calcination and reduction kinetics of AUC has been determined by non-isothermal method and the analysis of kinetic data was made by Osawa and Zsako methods. The results were as follows;

Mechanism	E(Kcal/mole)
2 nd nucleation and growth	19.5
3 rd nucleation and growth	30.12
4th nucleation and growth	31.43
	2 nd nucleation and growth 3 rd nucleation and growth