'98 추계 학술발표회 논문집 한국원자력학회 ## 이산화 우라늄 소결체에서 결정립 성장의 촉진 방법에 대한 연구 A Study on Methods to Enhance Grain Growth in UO2 Sintered Pellets 송근우, 김건식, 강기원 한국원자력연구소 대전광역시 유성구 덕진동 150 요 약 UO₂ 소결체의 결정립 성장을 촉진하기 위해서 Nb₂O₅ 농촉과립 및 소결체의 파쇄분말 같은 종자를 이용하는 방법에 대해서 연구하였다. Nb₂O₅를 UO₂ 분말과 균일하게 혼합하여 통상조건 (1700℃ /4시간/수소분위기)에서 소결하면 약 0.03 wt% 까지는 결정립 성장 효과가 없다. 소결체의 Nb₂O₅ 농도를 평균 0.03 wt%를 유지되도록, Nb₂O₅ 농축과립과 UO₂ 과립을 적정비율로 혼합하고 소결하면 농축과립에서는 10 ~30 μm 크기의 결정립의 영역 그리고 UO₂ 과립에서는 6 μm 크기의 결정립 영역이 형성된다. 따라서 이중 결정립 조직을 갖는 UO₂ 소결체를 제조한다. 0.3 wt% Nb₂O₅ 함유 소결체의 파쇄분말을 UO₂ 분말에 3% 혼합하고 소결하면, 약 17 μm 크기의 균일한 결정립을 얻는다. 또한 순수UO₂ 소결체의 파쇄분말을 UO₂ 분말에 3 wt% 혼합하고 소결하면 통상적인 방법으로 제조한 소결체보다 2 배 이상 큰 결정립을 얻는다. ## Abstract Methods to enhance grain growth in sintered UO₂ pellets have been studied using seeds such as Nb₂O₅-enriched UO₂ granules and UO₂ pellet fragments. The UO₂ pellet containing up to 0.03 wt% Nb₂O₅ showed a negligible increase in grain size under the condition that Nb₂O₅ and UO₂ powders are uniformly mixed and sintered in a conventional condition (1700°C/ 4hr/ hydrogen atmosphere). UO₂ granules and Nb₂O₅-enriched UO₂ granules were mixed and sintered to make the UO₂ pellet of which Nb₂O₅ concentration was 0.03 wt%. As a result a duplex grain structure, composed of grains of 10 \sim 30 μ m in Nb₂O₅-enriched granules and 6 μ m in UO₂ matrix, was developed. The UO₂ pellet doped with 0.3 wt% Nb₂O₅ was mechanically broken to make fragments and then added to UO₂ powder at 3 wt%. The sintered pellet using such pellet fragments as a seed had a uniform grain size of about 17 μ m. Pure UO₂ pellet fragments were also used as a seed and the produced UO₂ pellet had a grain size of 14 μ m. The grain size achieved by the above sintering method was two times larger than that by the conventional sintering method.