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An Adaptive Data Association Scheme for Multi-Target Tracking in
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Abstract

This paper introduced a scheme for finding the re-
lationships between the measurements and tracks in
multi-target tracking (MTT). We considered the rela-
tionships belween targets and meesurements as MRF
and assumed o priori as a Gibbs distribution. An en-
ergy function is defined over the measurement space , as
accurately as possible so that it may incorporate most
of the important natural constraints. To find the mini-
mizer of the energy function, we derived a new equation
of closed form.

1 Introduction

The primary purpese of a multi-target track-
ing(MTT) system is to provide an accurate estimate
of the target position and velocity from the measure-
ment data in a field of view. MTT system consists of
three blocks: acquisition, association, and prediction.

The purpose of the acquisition is to determine the
initial starting position of the tracking. After this
stage, the association and prediction interactively de-
termine the tracks. Qur primary concern is the associa-
tion part that must determine the actual measurement
and target pairs, given the measurements and the pre-
dicted gate centers.

This chapter addresses an optimal adaptive data as-
sociation scheme. First of all, we derives the mini-
mization process for data association energy equation.
Then proposed the parameter updating scheme to au-
tomize the system. Finally review the computational
complexity. We show the simulation results.

2 Problem Formulation and Energy
Function

Let m and n be the number of measurements and
targets respectively, in a surveillance region. Then, the
relationships between the targets and measurements
are efficiently represented by the validation matriz )
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0 = {‘:"ﬁlj € [l,m],t € [19’1‘]}1 (1)
where the first column denotes clutter and always
wjo = 1 (j € [1,m]). For the other columns, wj =
1 (7 € [1,m],¢ € [L,n]), if the validation gate of target
t contains the measurement j and w;; = 0, otherwise.

Based on the validation matrix, we must find hy-
pothesis matriz [3] Q= {&;:|f € [1,m],t € [1,n]}) that
must obey the data association hypothesis:

{Z'-":ltf)j: =1
Zmowﬂ = 1

Here, ;¢ = 1 only if the measurement j is associated
with clutter (£ = 0} or target t (t # 0). Generating
hypothesis matrices leads to a combinatorial problem,
where the number of data assoctation hypothesis in-
creases exponentially with the number of targets and
measurements. -

The ultimate goal of this problem is to find the hy-
pothesis matrix 0 = {w;|j € [1,m], ¢t € [1,n]}, given
the observation Y = {¥;]k € [1,m]}, which must sat-
isfy (2).

Let's consider that (1 is a parameter space and
(,Y, X) is an observation space. Then,a posterior:
can be derived by the Bayes rule:

for (¢ e [1,n]),

for (je[Lm) P

PO Py, x[) P()
Py, x)

Py, x) = (3)

Here, we assumed that P(0,y,x|{) =
P P(y,x|Q1), since the two variables © and
(X.,Y) are separately observed. This assumption
makes the problem more tractable as we shall see
later.

Given the parameter Q, 12 and (X, ¥) are observed.
If the conditional probabilities desecribing the relation-
ships between the parameter space and the observation
spaces are available, one can obtain the MAP estima-
tor:

" = argmax P(QQ,y,x). (4)
o
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According to (2], one gets

fr = a.rgmmAZZrtwﬁ+ ZZ{th—wﬂ)

t=1 j=1 t=1 j=1

n m

2w ‘_1)+Z(Zw1t"1), (5)

t=1 j=1 j=1 t=0

In (5), the first term favors associations which lo-
cates near the velocity line by weighted validation ma-
trix. The second term tends to discourage unrealistic
association by comparing the generated matched events
with the validation matrix. The third term represent
the constraints as explained in (2}.

3 Designing of Adaptive Data Associa-
tion Scheme

The optimal solution for (5) is hard to find by any
deterministic method. Instead, one can convert the
present constrained optimization problem to an uncon-
strained problem by introducing Lagrange multipliers
and using the local dual theory[6, 7]. This section ad-
dresses how to solve the equation and alsc how to de-
termine the related parameters automatically.

3.1 Minimizing the Energy Function

The problem is to find @* such that @& =

argming »q L{@, &, €}, where
n m

QZZTﬁQJﬁ + gzz(tﬁjt - u)jg)z

t=1 j=1 t=1 j=1

+ Z ,\t{zwﬁ ~1) (6)
=1

+ Zq(}_‘,wﬂ - 1). (7)
j=1 =0

L@ Ae) =

Here, A; and ¢; are just Lagrange multipliers. Note
that (6) includes the effect of the first column of the
association matrix, which represents the clutter as well
as newly appearing targets. In general setting, we as-
sume m > n, since most of the multitarget problem
is characterized by many confusing measurements that
exceed far over the number of original targets.

Let’s modify (6) so that each term has equal ele-

F /G WX E F2AE F2H 9B/
ments:
L@ he = ad Y rwu(l-4) (8)
t=0 j=1 '
+§{ EZ(MJT' - L‘th)2 - dmn - 1}
$=0 j=1
+ 30 Pa-1-dmas} )
=0 2=1

3

Ma

+ 3 () @ - 1), C (1)

j==1 bz

-
1]

where dmpn 2m—n— 1.

(8) is a convex function which guarantees the
extrema. Using the convex analysis for the local
duality[6], the optimal solution can be obtained by

@, 2", €") =argmaxm)f3.xm>ir[,1L(@,A,c). (11)

The necessary conditions[6] for achieving extreme in
(8) are

Vo, L@, A€ = 0,
Va L@, Ae) = 0, (12)
V(J.L(QJ,/\,E) = Q.

First from Vg, L{&, A, €) = 0, one obtains

o _ ﬁwjt — O‘Tjt(l — 5t) - z\t - €5
it = 8 !
o detSule) (13)
a3
where fj.(e;) & —~Buwijy + orje(l — &) + 5.

Putting (13) into (8) and rearranging the related
terms yields

L(de) = ZZ[A3+2)\tf,t(ej) (14)
t 0 j=1
#2204 i) + fles) - B
.B (dmn+1) €;
+Eom +2,@ni1]. (15)

Next, from V3, L(), €} = 0, one obtains the solution:

At- = —%(lﬂ‘dmn&t)_;%z.fﬁ(ej)‘ (16)

Substituting (16) into (14) results in

E;--H = & +“_Z{ﬁ(w3t_wt) (17)

fCt(]. - 51)(1"j£ - 7‘;)}, (18)

where u is an updating constant and 7 an iteration
index.
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Putting (13), (16), and {17) together, one obtains
the final representations of the solution:

o, Burye— ar,.(] 6y

A “"g(l + dmnét) - Z:J =1 fiele),

5; = j + P”[n_ﬂ Zt:n {ﬁ(wﬂ — @)
~a(l = &)y - )},

means optimal value of € at any scan.

I

where ¢*
3.2 Estimating Parameters

(19) contains two parameters o and 3. Remember
that o and 2 are related to the cost functions in (5).

To obtain the parameters, we consider the ML (Max-
imum Likelihood) estimation: Given (w,y,x) , O is
estimated as a maximum likelihocod estimate such that

@ = argeP(w,y,xlcb, 6)3 (20)

where © £ [«|#]7. Unfortunately, although the ML is
unique if it exists[1], the ML estimation is computa-
tionally prohibitive due to the calculation of the par-
tition function. Therefore, as an alternative of ML,
MPL (Maximum Pseudo Likelihood) is considered. In
the MPL estimation, P{w,y, x|, @) is represented as
a product of local partition function[1]:

Ply, xjw, &, ©)P(0lw, B} P(w|©)

Plw,y, x|w, 0} P10)

2

a

1
1z

0 jo=

m 1 X
H ?exp{-9T¢(w1t)},
jmi it

i

H.’:]:

where Z; is a local partition function: Z; =
Toece xp{—amjdib, — §(@5 — wse)?] and $(dye) is
the cost function in our system;:

Bl(ws) = [ ritjede ] .

3 (@5t — win)?

It is proven that (21) is strictly concave with respect
to @ if and only if the parameters that comprise © are
linearly independent with each other[l]. Therefore, ©
can be found from the gradient search method:

o0

(22)

i —uVelogP(w,y, x|0, ). (23)
Putting (21) into (23) arrives
et = GT—HVelnP(w Y. %@, © )Ie =ar
= —uZZ [0@n) -5 (9
t=0 j=1
3 S(op)exp (- ef’"cﬁ(@ﬂ))] , (25)

Qi Ed
where i and 7 are an updating constant and an itera-
tion index, respectively.

1

exp{—[or;dedy + g(djﬁ

Tgt | Pos. (km) | Vel. {km/s)
i T Y z ] ¥ B
1 40| 1.0 } 0.2 | -0.05
2 |40} 107] 02 ] 0.05
3 -6.0|-5.0]| 0.0 0.3
. 4 | 55| 50| 00| 03
~wpllh 550 70| 04 00
6 -8.0|-8.0] 04 0.0
(1) [ 7 |50 90 [035] 00
8 501 89 | 0.25 0.0
g 0.5 |-3.0] 0.1 0.2
10 [ 9.0 | 90001 02 |

4 Experimental Results

For the first three patterns, we present the results
of two simulation experiments which demonstrate the
performance of an optimal adaptive data association
scheme for multi target tracking. In the first exper-
iment, we consider data association capability using
the pattern shown in Fig. 1, 2, and 3. we present
some results of the experiments comparing the perfor-
mance of the proposed MAP estimate adaptive data as-
sociation(MAPODA) with that of the Hopfield Neural
PDA(HNPDA) of Sengupta and Iltis [5]. Like as HN-
PDA, the MAPODA has a good structure for a parallel
hardware, currently the algorithm is simulated by a se-
rial computer. Table 2 summarizes the rms position
and velocity errors for each targets. The performance
of the MAPODA is superior to that of HNPDA. The
rms error of HNPDA for the target 8 has not been in-
cluded since it loses track during the simulation.

Table 1: Initial Positions and Velocities of 10 targets.

Table 2: rms Errors in the case of ten targets

Tgt | Pos. error Vel. error | Track rate (%)
i HN [ MAP] HNTMAP [HNT MAP
1 064 | 042 {069 ] 0.18 95 100
2 |064] 042 [ 042] 017 | 95 100
3 0.78 1 042 | 0.22 | 0.18 | 100 100
4 060 043 [ 0.21 | 0.18 93 100
5 059 045 | 0.67 | 0.18 85 100
6 057 045 } 0.20 ) 0.18 | 100 100
7 0.57 | 042 | .31 | 049 90 100
8 - 2.95 - 1.18 0 53
9 062 | 044 | 0.27 | 0.21 &0 98
10 | 059 | 045 | 0.21.f 0.18 | 100 98
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5 Conclusions

The purpose of this paper was to explore adaptive
data association method as a tool for applying the
multi-target tracking. It was shown that it always
yields consistent data association, in contrast to the
Hopfield Neural PDA, and that these associated data
measurements are very effective for multi-target filter,
Although the MAPODA find the convergence recur-
sively, the MAPODA is a general method about the
solving the data association problems in multi-target
tracking. A feature of our algorithm is that it requires
only O(mn) storage, where m is the number of candi-
date measurement associations and n is the number of
trajectories, compared to some branch and bound tech-
niques, where the memory requirements grow exponen-
tially with the number of targets. The experimental
results show that the MAPODA is superior to the HN-
PDA in terms of both rms errors and track maintenance
rate. This algorithm has several applications and can
be effectively used in radar target tracking system.
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Figure 1: Data association test for equal distance be-
tween gates

Figure 2: Data association test for double distance be-
tween gates
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Figure 3: Data association test for random distance
between gates
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