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ABSTRACT

This paper proposes a systematic design methodology for the Takagi-Sugeno(TS) model based fuzzy
control system with guaranteed stability and additional constraints on the closed-loop pole location.
These combined two objectives are formulated as a system of LMIs (Linear Matrix Inequalities). Since
LMIs intrinsically reflect constraints, they tend to offer more flexibility for combining various constraints
on the closed-loop system. To demonstrate the usefulness of the proposed design methodology, it is
applied to the regulation problem of a nonlinear magnetic bearing system. Simulation results show
that the proposed LMI-based design methodology yields not only maximized stability boundary but
also the desired transient responses.

1 Introduction

In the past two decades, Fuzzy Logic Control(FLC) has been proposed as an alternative to the
traditional control techniques with many successful applications. In particular, systems which are
difficult to model, because of insufficient knowledge of the dynamic characteristics, and nonlinear with
significant variations in the parameter of the model are attractive candidates for the application of FLC.
However it has been argued that FLC being a rule based control strategy, almost by definition, lacks
an analytic and systematic methodology for the issues of stability, robustness, and other performance
requirements, and therefore, it cannot be reconciled with the traditional methods of control design and
analysis.

In recent years, there have been many research efforts on these issues based on the Takagi-Sugeno(TS)
fuzzy model.! The TS fuzzy model can provide an effective representation of complex nonlinear systems
with a set of linear local models, so the design of fuzzy controllers based on TS fuzzy models (Parallel
Distributed Compensator(PDC), following the terminology in3) is attractive. The concept of PDC ap-
proach is to design a compensator using linear control design techniques for each TS linear local model.
The resulting overall fuzzy controller ,which is nonlinear, behaves like a gain scheduling controller,
where the gain scheduling is implemented with fuzzy logic. For this TS model based fuzzy control
system, Tanaka et al,?® proved the stability by finding a common symmetric positive definite matrix
P for the r subsystems and suggested the idea of using Linear Matrix Inequality(LMI) for finding the
common P matrix. They have been considered very important results and some refining efforts have
been pursued thercafter. However the design process presented in,? and® involves a iterative process.
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That is, for each rule a controller is designed based on consideration of local performance only, then
LMI-based stability analysis is carried out to check the global stability condition. In the case that the
stability conditions are not satisfied, the controller for each rule should be redesigned. To overcome
such a defect, Wang et al® pointed out that it is more desirable to be able to directly design a controller
(instead of iterative process) which guarantees global stability by recasting to LMI problems. They,
however, did not consider performance issues such as transient behaviors. Generally, such a design
focused on only stability issue does not directly deal with the desired dynamic characteristic of the
closed-loop system which is commonly expressed in terms of transient responses. In contrast, the tran-
sient responses are more easily tuned in terms of pole location.5 For many practical problems, exact
pole assignment may not be necessary: it suffices to locate closed-loop poles in prescribed subregions
in the left half plane.

In this paper, we present a systematic design methodology for the stable fuzzy control system with
pole placement in a specified region in a complex plane. By imposing the additional requirment of the
closed-loop pole location, we can prevent fast controller dynamics and achieve good transient behavior.
More significantly, in the proposed methodology, the control design problems which considers both the
global stability and the desired transient performance simutaneously are reduced to the LMI problems.
Therefore solving these LMI constraints directly leads to a fuzzy state-feedback controller such that
the resulting fuzzy control system meets above two objectives. As a result, this approach is superior
to other approaches in® and® which achieves the desired control performances by trial-and error. To
demonstrate the usefulness, the proposed design methodology is applied to the regulation problem of a
nonlinear magnetic bearing system. It is well known that the design of the control system for magnetic
bearings is difficult and constitutes a challenging task due to the nonlinear and open-loop unstable
dynamics.® We used a model that has been studied previously in7 and.?

2 TS Fuzzy Model and Control

2.1 TS Fuzzy Model

An nth order SISO nonlinear system can be expressed in the following form:

£ =1
N (1
z.:’n = f(ml)mly‘ i ’1x’n7u)

where u is the control input.

By taking the Taylor’s series expansion of Eqn. (1) for r operating points (z},u*), where I =
1,2,-,n, the nonlinear system can be represented by the following linearized state space form:

)t(t) = Aix(t) + Biui(t) +d;, t=1,2,--7r (2)
where
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flzp,u)— Z 3f(ﬂ=u“ ) r 3f(=;§‘,“°)u.

and the variables with * denote the values at the operating points.

The continuous fuzzy dynamic model is described by fuzzy IF-THEN rules to express local linear
input-output relations of nonlinear systems around each operating point by above linear local model.
The ith rule of this fuzzy model is of the following form:

Plant Rule i:
If z,(t)is Liy---and z,(t) is Lin, Then x(t) = Aix(t) + Biu;{t) +d; (3)
1=1,2,---,7 and 7 is the number of rules and L;;s are fuzzy sets centered at the ith operating point.

The inference performed via the TS model is an interpolation of all the relevant linear models. These
degree of relevance becomes the weight in the interpolation process.

For any current state vector x(t) and input u(t), the final output of the fuzzy system is given by
Z i(t) {Aix(t) +Buriu(t) + di}
x(t)== = (4)
> (8

=1

n
where Ai(t) =J] Lij(x;(t)) and Li;(x;(t)) is the grade of membership of z;(f) in L;;. It should be
j=1

noted that even if the rules in a TS fuzzy model (3) involve only linear combinations of the model
inputs, the entire model is truly nonlinear as shown above (4).

2.2 TS Model-Based Fuzzy Control

We utilize the concept of PDC, following the terminology, to design fuzzy state-feedback controllers
on the basis of the TS fuzzy models (3). Linear control theory can be used to design the consequent
parts of the fuzzy control rules, because the consequent parts of TS fuzzy models are described by
linear state equations. If we compute the control input u(t) to be

ui(t) = wi(t) — koi 5)
where ko; = B—,-'(jf,_rﬁ’ then the Eqn. (2) is described by
x(t) = Ax(t) + Biii(t), 1=1,2,---7 (6)
Based on the piecewise linear model (6) we determine state feedback controller described by
@;(t) = Kix(t) (7

It should be noted that, however, the value of the control input actually used in the fuzzy rules would
be derived from Eqn. (5). Hence a set of 7 control rules takes the following form:

Control Rule i:

If =z(t)is Li; --- and z,(t) is Lin, Then wu;(t) = Kix(t)—ko; (8)
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Each of the rules can be viewed as describing a "local” state-feedback controller associated with the
corresponding "local” submodel of the system to be controlled. The resulting total control action is

5 () (Kax(t)—kor)
uft) = =
> ()

i=1
where A;(t)'s are the fuzzy weights obtained in the fuzzy model of the controlled system. Note that
the resulting fuzzy controller (9) is nonlinear in general since the coefficient of the controller depend
nonlinearly on the system input and output via the fuzzy weights. Substituting (9) into (4), the fuzzy
control system (closed-loop) can be represented by

33 MO0 (A +BiK;)x()
x(t) = S (10)
IPIPYOIND

i=1j=1

9

3 An LMlI-based Fuzzy Control System Design

We consider the synthesis of fuzzy state feedback control system that guarantees stability and
satisfies additional constraints on the closed-loop pole location. Wang and Tanaka® presented a design
methodology for the stable fuzzy control system by an LMI approach. In this Section, we extend these
earlier results by incorporating pole placement requirements in LMI region. By seclving these two kinds
of LMI constraints directly leads to a fuzzy state-feedback controller such that the resulting fuzzy
control system meets both the global stability and the desired transient performance simutaneously.
In particular, an attractive interior point algorithm is available to solve such LMIs.X0

3.1 Stability Analysis via Lyapunov Approach

A sufficient quadratic stability condition derived by Tanaka and Sugeno,!? for ensuring stability of
(10) is given as follows:

THEOREM 1. The fuzzy control system (10) is asymptotically stable in the large if there exists a
common positive definite matriz P such that

{Ai +BK;} " P+P{A; +BK;} <0 4,j=1,2,---,r (11)

Note that system(10) can be also rewritten as

x(t) = %[Z MOAOGx(E+2 T MON(OGx(t (12)
i=1

i<j

r r
where G,',; = {A,‘ -+ B,‘K,‘} ,G,-j = (A‘+Bixi%_£A"+BjK'k i< j, and W =Z Z /\,‘(t)/\j (t)

i=1j=1
Applying Theorm 1, we have the following revised sufficient condition for the fuzzy control system (12).

THEOREM 2. The fuzzy control system (12) is asymptotically stable in the large if there erists a
common positive definite matriz P such that

GIP+PG;;<0 i,=12,-,r GIP+PG;;<0 i<j<r (13)
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Conditions (13) are not jointly convex in K's and P. To cast these conditions into LMIs, we define
Q = P!, Then we can rewrite (13) as:

QGI+G,Q<0 =121 QGL+G;Q<0 i<j<r (14)

1

3.2 LMI Formulation for Pole-Placement Requirement

In the synthesis of control system, meeting some desired performances should be considered in ad-
dition to stability. Generally, stability condition(Theorem 2) does not directly deal with the transient
responses of the closed-loop system. In contrast, a satisfactory transient response of a system can be
guaranteed by confining its poles in a prescribed region. This section discusses a Lyapunov charac-
terization of pole clustering regions in terms of LMIs. To this purpose, we introduce the following
LMI-based representation of stability regions.

DEFINITION 1. (LMI stability region)® A subset of D of the complex plane is called an LMI region
if there exist a symmetric matric o = [ag] € R™*™ and a matriz 8 = [B,] € R™*™ such that
D={zeC: f[fp(z)<0} (15)
where the characteristic function fp(z) is given by fp(2) = [ +Bry 2+ By 2li<x i<m (fp @ valued
in the space of m x m Hermitian matrices)
It is easily seen that LMI regions are convex and symmetric with respect to the real axis. Specifically,
we consider circle LMI region D
D={z+jyeC: (z+q)°+y* <r?} (16)

centered at (-¢, 0} and has radius r>0, where the charateristic function is given by

=7, ) (1)

z+q

This circle region puts a lower bound on both exponential decay rate and the damping ratio of the
closed-loop response, and thus is very common in practical control design. Motivated by Chilali and
Gahinet’s Theorem,5 an extended Lyapunov Theorem for the fuzzy control system (10) is developed
with above definition of an LMI-based circular pole region as belows.

THEOREM 3. The fuzzy control system (10) is D-stable if and only if there exists a positive sym-
metric matriz Q such that

T

( -rQ 9Q +Q {A; + BK;} ) <0 (18)
qQ+ {A,‘ + B,;Kj} Q —rQ

The proof and more details of this theorem can be found in.5

It should be noted that since Theorem 3 will be used for the supplimentary constraints in our problem,

constraints of the LMI region to both case of i = j and 1 < j may not be necessary: it suffices to locate
the poles of only dominant term(in the case of ¢ = j) in the prescribed LMI regions.

3.3 Formulation for the Synthesis

In this section, we formulate a problem for the design of fuzzy state feedback control system that
guarantees stability and satisfies desired transient responses by using above LMI constraints (14) and
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(18). With change of variable Y;=K;Q , = 1,2, - -,7 and substituting into (14) and (18), this leads
to the following LMI formulation of our fuzzy state-feedback synthesis problem.

THEOREM 4. The fuzzy control (10) is stabilizable in the specified region D via PDC if there ezists
a common Q and Y; such that the following LMI conditions hold:

AQ+QAT +B,Y.+Y/BT < o (19)
A;Q+QA] +B,Y; +Y/BT LAQ+ QA7 +B;Y; + YTBT 0 (20)
2 2
-rQ qQ+QAT +Y]B \ _ (21)
9Q+A:Q+ By, Y; -rQ
Q > 0 (22)

Given a solution (Q, Y,), the fuzzy state feedback gain is oblained as

Ki=Y,Q! (23)

As a result, the obtained gain guarantees global stability while provides desired transient behavior
by constaint the closed-loop poles in region D.

4 Application to an Active Magnetic Bearing System

The objective of the control system of active magnetic bearing(AMB) is to maximize the stable
boundary of operation with desired transient performance through overcoming the gap nonlinearity.
To achieve such an objective, we design a fuzzy state-feedback controller based on Theorem 3 for a
nonlinear AMB system. Then we demonstrate the validity and practicality of the obtained controller
by some simulations. The model that has been studied previously in” and® will be used.

4.1 Active Magnetic Bearing(AMB) System

The AMB system which will be used is a two-axis controlled vertical shaft magnetic bearing with
a symmetric structure., Due to the small gyroscopic effect of this setup,® the system can be devided
into two identical subsystems(x-z and y-z planes), which means that each gap displacement for the
x-direction and y-direction can be controlled individually. Thus, without loss of generality, we will
focus our analysis strictly on the x- direction motion only.

The equations of motion for the AMB can be represented as®:
Il(t) = xz(t) (24)
5400 (ﬂ) (L L) (s = ip(0) )
Jr ) \(G =B (8))? (G +Bm())?
where z, denotes the displacement of the rotor from the center position, x5 is the velocity, and 1, is

the control input current applied to the electromagnets. The physical parameters of this experimental
setup are given as follows:

k(force constant) : 0.00186 ib-in/A% P(sensitivity of air gap to shaft disp.): 0.974
iy(bias current) : 0.3 A G(nominal air gap): 0.02 in
{(length of the rotor) : 4.8 in Jr(transverse MOI of the rotor) : 0.1341b - in - sec?
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4.2 TS Fuzzy Model

We represent the nonlinear system (24) by a TS fuzzy model (3) via linearization (using Taylor’s
series expansion) around several operating points.® With considerations of the nonlinear dynamic
characteristics of AMB® shown in Fig. 1(a), the membership functions of the fuzzy sets for z, and u
(= ip) are defined as Fig. 1(b)

-0 1
[H 1 % (10% inch)

(a) (b)

Fig.1 (a) 2-dimensional view of the characteristic of magnetic force (b) Membership function

With this definition we have totally 3% = 9 rules. However, to reduce the number of fuzzy rules, the
rules with similar antecedents and same consequent were grouped together and described by a single
approximate rule. As a result, three rules arc used to describe nonlincar dynamics (24). Denoting
X = { Ty I ], the piecewised linear TS fuzzy model can be written as:

Plant Rule 1: IFz, = ZE THEN %(t) = A;x(t) + Byu(t) £ d,
Plant Rule 2: IFzy = PO(orNE) and u = ZE, THEN x(t) = Apx(t) + Bau(t) +d,
Plant Rule 3: IFz; = PO(orNE) and v = NE(or PO), THEN %(t) = Asx(t) + Bsu(t) £ d,

where

4.3 Synthesis of Fuzzy Control System

Using Theorem 4, we can design fuzzy state feedback controller that guarantees global stability
while provides desired transient behavior by constraint the closed-loop poles in D. The stability region
D is a circle of center (-g, 0) and radius r and the LMI synthesis is performed for a set of values:

(q r)=(450 250)

then The-LMI region has the following charateristic function as

_| —250 450+ 2
fo(2) [450+z —250]
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By solving LMI feasibility problem of Theorm 4, we can obtain a positive symmetric matrix Q as

[ 0.0001 —-0.0158]

Q=] 00158 4.8053
and Y3, Y2 and Y3 as

Y1=[00021 -1.0435],Y,=[ —0.0002 —0.2052 ],Y5=[ 00049 -2.2716 |

Finally, the state feedback gain can be obtaind by (23).
K; =[ -108.49 -0.57 ] Ke=[ 7181 —0.28 | ,K,=[ -212.34 -1.17 ]

For comparison, we also calculate the state feedback gains when the constraint for the pole-
placement is ommited(i.e. considering only stability condition). At that time a positive symmetric
matrix Q, matix Y;, and gain matrix K; are as belows:

_ [ 00007 —0.0414
Q= —ooa14 73873
Yy =[-00161 05540 ],Y;=[ —0.0203 1.0659 ],Y5=[ —0.0229 0.6460 ]

K, =[-31.00 ~010 ] ,K;=[ 3435 —0.05] K, =[ —46.12 —0.17 ]

The resulting fuzzy control law for each piecewise linear segment of the fuzzy model can be written as
follows:

Control Rule 1: IFzy = ZE, THEN u(t) = K;x(t)~ko
Control Rule 2 : IFz; = PO(orNE) and u = ZE(orP0O), THEN u(t) = Kox(t)—ko
Control Rule 3: IFz, = PO(orNE) and u = NE(orPO), THEN u(t) = Kyx(t)—kgs

where ko; = 0, koz = 0.147, and kg3 = 0.197.

The overall fuzzy state feedback controller is

(M OK1+22(t)Ka+A3(t)Ks) x(t)

(D) + 32() + A (0) (25)

u(t) =

which is nonlinear.

4.4 Simulations

To investigate the effectiveness of the proposed controller, some simulations were performed. For
comparison another fuzzy state feedback controller which was obtained by stability constraints only
(without pole-placement constraints) was employed. In addition, a linear local controller (control rule
1) which was designed for a single equilibrium point is employed. We can see that the results of fuzzy
controller which was obtained by both stability and pole placement constraints(Fig 2(b)) indicate better
transient performance than those of another fuzzy controller which was obtained by stability constraints
only(Fig 2(a)), while both fuzzy controller give stable response regardless of any initial displacement.
Therefore, it is desiarable to tune the stability and trasient response simultaneously by combining these
two objectives. The performance of these two controllers were measured by the following quadratic
error index.

. ‘ 2
I.= /0 e(t)?dt (26)

The above performance index was calculated for each response of three different initial dispalcements.
They are summarized in Table 1. Through these results we can verify the effectiveness of the proposed
multi-objective(stability+closed-loop pole location) design approach.

- 163 -



Quadratic Error
Initial disp. | xp = 0.0033 | 2o = 0.0066 | z¢ = 0.0099
Fig. 2(a) 7.058¢ -5 | 2939¢—4 | 7.498e —4
Fig. 2(b) 4.292¢ — b 2.120¢ — 4 6.338¢ — 4

Table 1: Comparisons of two LMI approaches

We also tested the performance of the linear local controller (control rule 1) which was designed for a
single equilibrium point. As can be seen in Fig 2(c), it performs well near the equilibriumn point, but
its effectiveness deteriorates outside of the limited operating region and fails to regulate the rotor for

the initial displacement of |zp = 0.0075 inch|. This small boundary of stability is due largely to the
nonlinearity of AMB.

1 x 10 0.01
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Fig. 2 2 Responses of (a) fuzzy control with constraints for stability only (b) fuzzy control with

constraints for both stability and pole-placement (c) linear local control with constraints for both
stability and pole-placement

5 Conclusion

In this paper, we presented a systematic design methodology for the stable fuzzy control of nonlinear
dynamic syatems with pole placement in a specified region in a complex plane . By imposing the addi-
tional requirment of the closed-loop pole location, we can prevent fast controller dynamics and achieve
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good transient behavior with guaranteed stability. More significantly, in the proposed methodology,
the control design problems which considers both the global stability and the desired transient perfor-
mance are reduced to the LMI problems. Therefore solving these LMI constraints directly leads to a
fuzzy state-feedback controller such that the resulting fuzzy control system meets above two objectives.
As a result, this approach is superior to other existing approaches which achieves the desired control
performances by trial-and error. To demonstrate the usefulness of the proposed design methodology, it
is applied to the regulation problem of a nonlinear magnetic bearing system. Simulation results show
that the proposed LMI-based design methodology yields not only maximized stability boundary but
also the desired transient responses.
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