A Cluster Validity Index for Fuzzy Clustering
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Abstract

In this paper, a new cluster validation index which is heuristic but able to eliminate the monotonically
decreasing tendency occurring in which the number of cluster ¢ gets very large and close to the number of data
points n is presented. We review the FCM algorithm and some conventional cluster validity criteria, discuss on
the limiting behavior of the proposed validity index, and provide some numerical examples showing the
effectiveness of the proposed cluster validity index.

I. Introduction

Since Zadeh’s formulation of fuzzy set theory, many fuzzy set-based approaches to fields such as control,
pattern recognition, decision-making, and clustering have been developed and applied to systems with
uncertainty. The basic idea of these approaches is to represent the uncertainty of the given systems by means of
fuzzy rules and their membership functions defined over appropriate discourses. One of the most prominent
applications of it may be a fuzzy logic-based modeling by means of fuzzy clustering [10].

Cluster analysis is to place elements into groups or clusters suggested by a given data set X={x,, .. ., x,}
R? which are n points in the p-dimensional space for summarizing data or finding "natural” or "real"
substructures in the data set. The Fuzzy C-Means (FCM) algorithm [1] and its derivatives based on the
possibilistic approach [3,4] for the cluster analysis have been the dominant approaches in both theory and
practical applications of fuzzy techniques to unsupervised classification for the last two decades.

As pointed out by Milligan [2], a cluster analysis will not only refer to clustering methods such as the FCM
and the possibilistic approach but also to the overall sequence of steps such as clustering elements, clustering
variables, variable standardization, measure of association, number of clusters, interpretation, testing, and
replication. In recent years, many literatures have paid a great deal of attention to cluster validity issues, and
many functionals have been proposed for validation of partitions of data produced by the FCM algorithm
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[5,6,7,8,9,11]. According to the Pal and Bezdek’s analysis [9], the Fukuyama-Sugeno index [6] is sensitive to
both high and low values of the weighting exponent m and may be unreliable because of this. The Xie-Beni index
provided the best response over a wide range of choices for the number of clusters, (2-10), and for the weighting
exponent m from 1.01-7. On the basis of their analysis, they suggested that the best choice for the weighting
exponent m may be probably in the interval [1.5, 2.5], whose mean and midpoint, m=2, have often been the
preferred choice for many users of the FCM.

However, the Xie-Beni index vy has a flaw that is monotonically decreasing when the number of cluster ¢
gets very large and close to the number of data points n. Xie and Beni suggested that an ad hoc punishing
function should be imposed to eliminate the monotonically decreasing tendency, but not discussed how to choose
the function. It is highly recommended to impose a punishing function, which is a function of the number of
cluster, to eliminate the monotonically decreasing tendency of the cluster validation indexes as like as the
statistical model selection criteria do.

The author has proposed a new cluster validity index for fuzzy clustering [11]. In this paper, the cluster
validation index which is heuristic but able to eliminate the decreasing tendency occurring in which the number
of cluster c gets very large and close to the number of data points n is presented. The FCM algorithm and some
conventional cluster validity criteria are presented and the limiting behavior of the proposed validity index will
be discussed.

This paper is organized as follows. In section 2, we review the FCM algorithm and some cluster validity
criteria, and present a new cluster validity index. Section 3 describes some numerical examples showing the
effectiveness of the presented cluster validity measure.

II. Fuzzy C-Means Algorithm and Cluster Validity

The Fuzzy C-Means (FCM) algorithm is a constrained optimization problem which minimizes the following
objective function with respect to membership functions u; and cluster centroid v;,

n 4 2
InU VX =Y Yu,"x, -v) )
J=1 =1
where U=[y;] is a ¢ x n matrix, ¢ is the number of clusters, n is the number of data points, satisfying the
conditions in (2),

My, = {U € R™"

n 4
uy €[00 Vi, j; 0< Yu, <n Vi, and Yu,; =1 Vj} )
J=1 i=}

V=(v,, . . ., vo) is a vector of cluster centers, v; € R? for ¢ =i 2 | and ||e|| denotes any inner product norm.
Optimal partitions U" of X are taken from pairs (U", V') that are local minimizers of J,, obtained by iteration
through the following necessary conditions.

Fuzzy C-Means Theorem [1]:

If
D, ~Jx, ~u], >0 v,

the weighting exponent m>1, and a data set X contains ¢ < n distinct points, then (U,V) € Mg, x R® may
minimize J, only if

e[ Dyy -1 o .
u,.j=zD—— ,1gig¢c 1<j<n 3)
k=1 JkA
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If for some i and j, D;j, =0, a smgulanty occurs, then assign 0’s to each u;; for which D;;4 > 0, and distribute
membership functions arbitrary across the x,’s for which Dy, = 0, subject to the constraints in (2). Some limiting
properties of (3) have been studied by Pal and Bezdek [9] and are not discussed here.

Among a class of cluster validity functionals such as
the Dunn’s normalized partition entropy [5]:

n 1
vpU)= Ve = Z Z“y log, (uy), 4)
n-c ==
the Bezdek’s partition coefficient [1] :
Vp(-(U)— Z Zu., , (%)
=1 =l
the Bezdek’s partmon entropy [1]:
Vg (U) = Z Z Uy loga (ulj ), (6)

n -y =1
where logarithmic base a e (1,%) and u; log(u;) = whenever u; = 0,
the Fukuyama-Sugeno index [6] :

s UV X) =3 S, (|| || -7 nz) @)

J=1 i=t
the Xie-Beni index [8]:

i Z"U‘2||x1 _"‘"2
v (U V5 X) = 2 — ®
n min("vi—vk" )]
and the extended FCM Xie-Beni index [8] :
n C 2
5 Sk -l
v U V; X)=221 )
| min (fy, v, )}

We consider only the Xie-Beni index vy given by (8) because it provides the best response over a wide range of
choices for the number of clusters and for the weighting exponent m as discussed in the introduction.

Xie and Beni stated that vy decreases monotonically when the number of clusters ¢ is close to n. To avoid
the indetermination due to the monotonicity, they recommended plotting vy as a function of ¢, finding the
starting point of the monotonic epoch as the maximum cluster number to be considered, and then selecting a
value ¢ minimizing vxgs. Because it requires a cumbersome procedure to find an optimum value of c, it may not
be a sufficiently good cluster validity index even though it provides good responses through the cumbersome
procedures.

In clustering, it attempts to maximize intra-class similarity and inter-class differences. In this sense, a new
cluster validity index vy is defined as

C

1
I IR e
>

ve UV X) =2 - (10)
min (f, - v, ")

The first term of the numerator in (10) measures the intra-class similarity, that is, how compact each and
every class is. The more similar (compact) the classes, the smaller it is. It is independent of the number of data
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points. The second term of the numerator in (10) is an ad hoc punishing function imposed to eliminate the
decreasing tendency occurring when the number of cluster ¢ gets very large and close to the number of data
points n. The denominator in (10) which is the minimum distance between cluster centroids measures the inter-
class difference. A larger value of it indicates that every cluster is well-seperated. Our goal is to find the fuzzy c-
partition with the smallest value of vy.

In order to investigate the limiting behavior of the proposed index, we take a limit of the validity functional as
¢ approaches n.

Xie-Beni index, ¢ — n: Since

timf, v =0, (1D

we have

2 2wl _"'"2
im v 5 (U, ¥; X) = lim 2= =0. (12)
c—n cn . 2

n[rggp(llv, vl >]

From (12), we can see that the Xie-Beni index loses its ability to validate (U,V) pairs from the FCM for the large
value of c.

The proposed index, ¢ — n: Since (11) holds for this case, we have

n c 1 e
R R
lim"l((U,V;X)=lim’=l i pas

c—>h crn

. 2
min (v, - v |
izk (13)
I
ZCy
= n
. 2
min (Jv, —v¢|")
where Cy is the total scatter matrix of X. From (13), we can see that the the proposed index keeps its ability to
validate (U,V) pairs from the FCM for large value of c. Here, we do not discuss on the intuitive meaning and

mathematical justification of the proposed index, which are required for the any new validity functional, because
the research on those is on the way.

II1. Numerical Examples On the Cluster Validity Index

In this section, we consider three examples of data sets to show the effectiveness of the proposed cluster
validity. We first present a simple example with ¢=2 as the preferred clusters, which is known as the butterfly
data set [1] to provide insights into the limiting behavior of the cluster validity indexes. We then present two
examples which are the derivatives of the butterfly data set and have ¢=3 and c=4 as the preferred clusters,
respectively.

Example 1: We consider the butterfly data set X, of 15 data points in p=2 dimensions shown in Fig.]. Data

points (2,2), (3,2), and (4,2) form a bridge or neck between the wings of the butterfly. Another interpretation of
the pattern is that points in the wings were drawn from two fairly distinct classes; points in the neck are noise.
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Fig. 1. Example 1 : X,.

Example 2: We consider a set X, of 22 data points in p=2 dimensions shown in Fig.2. A data point (0,1) forms a
bridge among three diamonds. Another interpretation of the pattern is that points in the each diamond were drawn
from three fairly distinct classes; a point in the neck is noise.
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Fig. 2. Example 2 : X,.

Example 3: We consider a the butterfly data set X; of 29 data points in p=2 dimensions shown in Fig.3. Data
points in each triangular were drawn from four fairly distinct classes.
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Fig. 3. Example 3 : X;.

For each of data sets shown in the above we performed the FCM with the terminating criterion € = 1.0e-8 >
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U, — U,.,|} for different weighting exponents m=1.2, 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0, and c=2, 3, . . . , n-1. Table 1
shows index values by each of the Xie-Beni index and the proposed index on the data set X, for ¢=2 to 14, and
m=1.2, 2.0, and 7.0.

Table 1. Index values on the data set X; for ¢c=2 to 14, and m=1.2,2.0, 7.0

c The Xie and Beni index vxg The proposed index vi

m=1.2 m=2.0 m=7.0 m=1.2 m=2.0 m=7.0

2 | 0.1059 | 0.0954 | 0.2242 2.5402° 2.3864" 44367

3 | 02650 | 0.2054 | 0.5460 6.7261 6.0076 12.0636

4 | 0.2388 | 0.3972 1.6116 6.3251 15.6559 40.8956

5 | 0.1509 | 0.1061 1.3306 6.0418 5.3539 34.3596

6 | 0.2613 | 0.0946 1.0503 12.446 6.8607 36.0507

7 | 02289 | 0.0649 | 0.8068 10.4327 62112 27.5306

8 | 04220 | 0.1123 0.6485 27.4192 13.4601 254776

9 | 0.2307 | 0.1434 | 0.5180 18.9677 22.2546 26.6591

10 | 0.2512 | 0.1017 | 0.3827 27.5783 16.6737 23.8405

11| 0.1874 | 0.0913 | 0.2997 22.3963 20.8977 21.3138

12 | 0.1216 | 0.0362 | 0.2182 20.4382 16.0205 22.6899

13 | 0.2048 | 0.0380 | 0.1020 47.5482 19.9721 21.2986

14 1 0.0332" | 0.0128° | 0.0450" | 21.2304 19.1730 21.6036

Asterisks in Table 1 indicate the minimum index values obtained by each index for the weighting exponent
m=1.2, 2.0, 7.0. Since the preferred value of ¢ is 2, we see that the proposed index correctly points to the
preferred value of ¢ for each weighting exponent, but the Xie-Beni index points to ¢=14. This behavior is
consistent with the fact, which is the Xie-Beni index loses its ability to validate (U,V) pairs from the FCM for the
large value of c, discussed in the previous section. Table 2 lists the value of the number of clusters chosen by
each of the Xie-Beni index and the proposed index.

Table 2. Values of ¢ chosen by each index for the data sets X, and X;

m X,:¢'=3 X;: ¢ =4
Vxp Vk VxB Vk
1.2 15 3 15 4
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20 15 3 15 4
3.0 15 3 15 4
4.0 15 3 15 4
5.0 15 3 15 4
6.0 15 3 15 4
7.0 15 3 15 4

Since the preferred values of ¢ are 3 and 4, respectively, we see that the proposed index correctly points to
the preferred values ¢=3 and c=4 for each weighting exponent but the Xie-Beni index points to ¢=15 in every
case. From these results, we conclude that the proposed cluster validity index shows the superior performance to
the Xie-Beni index, and the Xie-Beni index may be unreliable.

IV. Conclusions

In this paper, we have presented a cluster validation index to eliminate the monotonically decreasing
tendency, which is the typical flaw of the conventional cluster validity indexes, when the number of cluster gets
very large and close to the number of data points. We have reviewed the FCM algorithm and some cluster
validity criteria, and discussed on the limiting behavior of the presented validity index. Finally, numerical
examples showing the effectiveness of the proposed cluster validity index have been provided.

Researches on the description of intuitive meaning, the mathematical justification, and applications to real
data sets are on the way.
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