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Existence and Uniqueness of Solutions of
Fuzzy Integro-Differential Equation with
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Abstract : We will prove the existence and uniqueness theorem of solutions to the

nonlocal fuzzy integro-differential equations using Contraction mapping principle.

1. Introduction

The initial value problem
2 (D=t x(9), x(0)=x,

has a solution provided ubs £ I( CR) x X—X(Banach space) is continuous and satisfies a Lipsc
h-itz condition in [3]. The definitions given in this paper generalizes that of Aumann[1] for s
et-valued mappings. Kaleva [4] discussed the properties of differentiable fuzzy set-valued map
pings and gave the existence and uniqueness theorem for a solution of the fuzzy differential e
quations f:I{CR)*xX—X when j satisfies the Lipschitz condition and he studied the Cauchy
Problem of fuzzy differential equations. Byszewski[2] investigated the existence and uniqueness
of mild, strong, and classical solutions of a nonlocal Cauchy problem for a semilinear evolution
equation. Park and Han([6,7,8]) studied existence of approximate solution for fuzzy differential

or integral equation, respectively and investigated the existence and uniqueness of solutions fo



r nonlocal fuzzy differential equations. Also, Subrahmanyam and Sudarsanam{10] studied existe
nce theorems for fuzzy Volterra integral equations. In this paper, we prove the existence and
uniqueness theorem of solutions to the nonlocal fuzzy integro-differential equations

% (D= Ab2(0), [ Kt 2()db),

x2(0) — g(ty, ty, =, tp, x( +)) = xy,
where 0< 4 <<, <a, f1IXE"X E™E" k:I)x E™>E"™( the space of all fuzzy sets of R"
with metric D (u, v) = sup g<q<1 ([ %] %, [v]?) are levelwise continuous functions which satisfi

es a generalized Lipschitz condition and also g:PxE"—E" satisfies a generalized Lipschitz con
dition and I=1[0, al. The symbol g(¢,%,--,¢,,x( - )) is used in the sence that in the place

of - we can substitute only elements of the set {f,#,,t,}. We denote I=[0,a], a is a
positive number. For example g(#, %, ", t,,x( + )) can be defined by the formula
gty ty, -, by, x( - ))=cx(t)) +--- + cx(t,),

where c¢;(z=1,2,-,p) are given constants.

2. Preliminaries
Let Px(R™) denote the family of all nonempty compact convex subsets of R" and define the
addition and scalar multiplication in Pg(R") as usual. Let A and B be two nonempty bound
ed subsets of R” . The distance between A and B is defined by the Hausdorff metric

d(A, B) =max {sup ,eainf sepla— bl, sup sepinf ,c4la— bl},

where || denotes the usual Euclidean norm in R" Then it is clear that (Px(R™),d) beco

m-es a metric space.
Theorem 2.1 [9] The metric space (Px(R"),d) is complete and separable.

Let T=[c, dICR be a compact interval and denote
E"= {u:R">[0, 1] |u satisfies (i) — (iv) below }

where

() u is normal ie., there exists an x;=R” such that w(x;)=1
(i1) wu is fuzzy convex,

(iii) u is upper semicontinuous,

Gv) [«]°= clixe R"u(x)>0) is compact.

For (<a <ldenote [u]’= {x=R"| u(x)=a}, then from (i)-(iv) it follows that the
a-level set [u] “€Pr(R") for all 0 <ea <1.
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If h:R"XR"™R" is any function; then, according to Zadeh’s extension principle, we can exte
nd 2 to E"XE"—E”" by the equation
h(u, vN(2) = Sup ;= p(x, ymin{z(x), v(3)}.

It is well known that [A(w, )] %= h([2] ?,[v]°) for all w,veE", 0< a <land k is contin
uous. Especially for addition and scalar multiplication, we have

lut o]l “=[eu] “+[0]°, [kl *=Hu]“,
where u, ve E™ ke R, 0 <a <1,

Theorem 2.2 [5] If u=E” then

(i) [u] “ePx(R™) for all 0 <a<l,

Gi) [w] “Clul® for 0 <ay <a, <1,

(iii) If {@,}<{0,1] is a nondecreasing sequence converging to a0, then

[wl “= [[ul ™.

k1
Conversely, if {A“10 <a<l}is a family of subsets of R"satisfying (i)-(iii), then there
exists a u €E”" such that [#]°=A° for 0<e <1 and [u]°= 0(USlA"CAO.
Define D:E"XE">R*U{0} by the equation

Du, v) =sup g<q<;d([2] %, [0] %),

where a is the Hausdorff metric defined in Pg{R™).

The following definitions and theorems are given in [4].

Definition 2.1 A mapping F:T—E" is strongly measurable if for all a=[0,1] the set-val
ued mapping F ,: T—>Py(R") defined by F () =[F(#]° is Lebesque measurable, when
Pi{(R") is endowed with the topology generated by the Hausdorff metric @ and 7 is a subi

nterval of real number R.

Definition 2.2 A mapping F:T—E" is called levelwise continuous at tye T if the set-valu

ed mapping F () =[F(H]° is continuous at ¢=f; with respect to the Hausdorff metric 4 f
or all a=[0,1].

A mapping F:T—E" is called integrably boundea if there exists an integrable function # su
ch that |x} <&(D for all x= Fy(#).

d
Definition 2.3 Let F:T—E" The integral of F over 7T, denoted by fTF (Hdt or fc F(Hdi |



is defined levelwise by the equation
[ [ Fpai® = [ F(pat
= {f T}‘( B \f: T—R" is a measurable selection for F',}

for all 0<a<1.

Also, a strongly measurable and integrably bounded mapping F:T—E” is said to be

integrable over T if fTF( Hdte E”

Theorem 2.3 If F: T—E" is strongly measurable and integrably bounded, then F is
integrable.

0
It is known that [ fTF(t)a't] = fTFO(t)dz (see [4]).

Theorem 2.4 Let F,G:T—E" be integrable and A € R. Then
W [(F()+Gdi= [ Fnar+ [ G(har,

(i) fTAF(t)dt=A fTF(t)dt,
(iii) D(F, G) is integrable,
(iv) D( jTF(t)dt, fTG(t)dt)s fTD(F, G)(1) dt.

Definition 2.4 A mapping F:T-E" is Hukuhara differentiable ai ty= T if for some hy>0
the Hukuhara differences
F(ty+ 41 — 4F(ty), F(ty) — oF(ty— 4%)

exist in E” for all (< 4t<h; and if there exists an F'(#)=E”" such that

Hm 40+ D ((F(ty+ 48— F(t))/ 4At, F (4)) =0
and

im0+ D ((F(ty) — 1 F(ty— 49)/ ¢, F () =0.
Here F'(1) is called the Hukuhara derivative of F at {.

Definition 2.5 A mapping F:T—E" is called differentiable at #, =7 if for any a =[0,1] the
set-valued mapping F ,( - )=[F( )] “are Hukuhara differentiable at point #, with Hukuhara
derivative F,’(¢,) for each a<[0,1].

If F:T—E"is differentiable at fy= 7, then we say that F'(f) is the fuzzy derivative of
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F(? at the point £,

Theorem 2.5 Let F:7—E" be differentiable and assume that the derivative F' is integrable

over 7 . Then for each s 7, we have

F(s) = F(a) + fF'(:)dt.

Definition 2.6 A mapping f: TX E"X E">E" is called levelwise continuous at a point
(89, xg, ) € TXE"X E” provided that for any fixed @ €[0,1] and arbitrary €>0, there exist
s a &(&,a)>0 such that
d(Lf (4 2,01, [f(ty, %0, ¥9)1 W<,
whenever | t—t; | <8(e, a), d([x]°,[x]1)< e, a) and d([y]7,[3]1°)<(&(e,a) for all
teT, x,yeE™

3. Nonlocal Fuzzy Integro-Differential Equations

Assume that f:IX E"XE">E", k:I’x E">E" are levelwise continuous and g:I’x E" »E"

is a function, where the interval I=1[0, a]. Consider the fuzzy integrodifferential equation
t
C(O=RLAD), [ K5 (Nd), w0 =glty, by, b2 N=xp (3.1

where xy e E” .

Definition 3.1 A mapping x:I>E" is a solution to the problem (3.1) if it is levelwise

continuous and satisfies the integral equation

)=z + &t by, by 2 N+ [R5, 29, [ K, 7))

for all tel,

We shall omit the proofs of following main theorems.

Theorem 3.1 Assume that
(i)A mapping f:J;—E", k:J;>E" are levelwise continuous and g:J/;—E”" is a function, wher
efo=IXVY XY, =FxVY and=PxY,
Y = {9 E" |H (9, xy)< b}
is the space of continuous functions with H(@, ¢) =sup g<,<e DX @(8),#(H) and & is

a positive number.

(ii) For each pairs (¢ x, ), (t,yv,d el (t,s,2,(ts,y) €]y and (#,, t,,x( - ),
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(4, tpyy( ) e J, we have

D(f(t, x, ), At,y, )< L[ D(x,y) + D( g, $)],
D(k(t, s, x), k(t,s,y) <L,D(x, ), (3.2)
Dlg(ty, =, tyx( - )), g(ty, . t,, (- N) < KD(x, y),

where L,,L,, K>( are given constants.
Then there exists a unique solution x=x(#) of (3.1) defined on the interval [0, £]

—_ 2_ —
where &£=min{a, b;4N, L1+\/L12L14[{;1L2(K D) }, M= D(At % 9),0),

N=D(g(t;,", t,, % +)),0),0 €E” such that 0(f)=1 for ¢t=0 and 0 otherwise and for a

ny (tx) <],

Theorem 3.2 Suppose that f, kg are the same as in Theorem 3.1. Let x(? xq), (¢, ;) be
solutions of equation (3.1) corresponding to $x_0, y_0%, respectively.
Then there exists a constant #7>0 such that

Hy(x( -, %0), (-, 90)) < 2D (xq, )

1
1-K—€L,—EL\L,"

for any xp, yp €E” and 7=
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