비국소 조건을 갖는 퍼지 미분적분방정식의 해의 존재성과 유일성

Existence and Uniqueness of Solutions of Fuzzy Integro-Differential Equation with Nonlocal Condition

박동근, 한효근

동아대학교 자연과학대학 수학과

Department of Mathematics, Dong-A University, Pusan 609-714, Korea

김선유

진주교육대학 수학교육학과

Department of Mathematic Education, Chinju National University of Education, Chinju, 621-749, Korea

Abstract: We will prove the existence and uniqueness theorem of solutions to the nonlocal fuzzy integro-differential equations using Contraction mapping principle.

1. Introduction

The initial value problem

$$x'(t) = f(t, x(t)), x(0) = x_0$$

has a solution provided ubs $f.I(\subset R) \times X \rightarrow X$ (Banach space) is continuous and satisfies a Lipsc h-itz condition in [3]. The definitions given in this paper generalizes that of Aumann[1] for s et-valued mappings. Kaleva [4] discussed the properties of differentiable fuzzy set-valued mappings and gave the existence and uniqueness theorem for a solution of the fuzzy differential e quations $f:I(\subset R)\times X\rightarrow X$ when f satisfies the Lipschitz condition and he studied the Cauchy Problem of fuzzy differential equations. Byszewski[2] investigated the existence and uniqueness of mild, strong, and classical solutions of a nonlocal Cauchy problem for a semilinear evolution equation. Park and Han([6,7,8]) studied existence of approximate solution for fuzzy differential or integral equation, respectively and investigated the existence and uniqueness of solutions fo

r nonlocal fuzzy differential equations. Also, Subrahmanyam and Sudarsanam[10] studied existe nce theorems for fuzzy Volterra integral equations. In this paper, we prove the existence and uniqueness theorem of solutions to the nonlocal fuzzy integro-differential equations

$$x'(t) = f(t, x(t), \int_0^t k(t, s, x(s)) ds),$$

$$x(0) - g(t_1, t_2, \dots, t_p, x(\cdot)) = x_0,$$

where $0 < t_1 < t_2 < \dots < t_p \le a$, $f: I \times E^n \times E^n \to E^n$, $k: I^2 \times E^n \to E^n$ (the space of all fuzzy sets of R^n with metric $D(u,v) = \sup_{0 \le a \le 1} d([u]^a,[v]^a)$ are levelwise continuous functions which satisfies a generalized Lipschitz condition and also $g: I^p \times E^n \to E^n$ satisfies a generalized Lipschitz condition and I = [0,a]. The symbol $g(t_1,t_2,\dots,t_p,x(\cdot))$ is used in the sence that in the place of \cdot we can substitute only elements of the set $\{t_1,t_2,\dots,t_p\}$. We denote I = [0,a], a is a positive number. For example $g(t_1,t_2,\dots,t_p,x(\cdot))$ can be defined by the formula

$$g(t_1, t_2, \dots, t_p, x(\cdot)) = c_1 x(t_1) + \dots + c_p x(t_p),$$

where c_i ($i=1,2,\dots,p$) are given constants.

2. Preliminaries

Let $P_K(\mathbb{R}^n)$ denote the family of all nonempty compact convex subsets of \mathbb{R}^n and define the addition and scalar multiplication in $P_K(\mathbb{R}^n)$ as usual. Let A and B be two nonempty bound ed subsets of \mathbb{R}^n . The distance between A and B is defined by the Hausdorff metric

$$d(A, B) = \max \{ \sup_{a \in A} \inf_{b \in B} |a - b|, \sup_{b \in B} \inf_{a \in A} |a - b| \}$$

where $|\cdot|$ denotes the usual Euclidean norm in \mathbb{R}^n . Then it is clear that $(P_K(\mathbb{R}^n), d)$ becom-es a metric space.

Theorem 2.1 [9] The metric space $(P_K(\mathbb{R}^n), d)$ is complete and separable.

Let $T = [c, d] \subseteq R$ be a compact interval and denote

$$E^n = \{u : R^n \rightarrow [0,1] | u \text{ satisfies } (i) - (iv) \text{ below } \}$$

where

- (i) u is normal i.e., there exists an $x_0 \in \mathbb{R}^n$ such that $u(x_0) = 1$
- (ii) u is fuzzy convex,
- (iii) u is upper semicontinuous,
- (iv) $[u]^0 = cl\{x \in R^n | u(x) \ge 0\}$ is compact.

For $0 \le \alpha \le 1$ denote $[u]^{\alpha} = \{x \in \mathbb{R}^n \mid u(x) \ge \alpha\}$, then from (i)-(iv) it follows that the α -level set $[u]^{\alpha} \in P_K(\mathbb{R}^n)$ for all $0 \le \alpha \le 1$.

If $h: R^n \times R^n \to R^n$ is any function; then, according to Zadeh's extension principle, we can extend h to $E^n \times E^n \to E^n$ by the equation

$$h(u, v)(z) = \sup_{z=h(x, v)} \min\{u(x), v(y)\}.$$

It is well known that $[h(u,v)]^{\alpha} = h([u]^{\alpha},[v]^{\alpha})$ for all $u,v \in E^n$, $0 \le \alpha \le 1$ and h is continuous. Especially for addition and scalar multiplication, we have

$$[u+v]^a = [u]^a + [v]^a, [ku]^a = k[u]^a,$$

where $u, v \in E^n, k \in R, 0 \le \alpha \le 1$.

Theorem 2.2 [5] If $u \in E^n$, then

- (i) $[u]^{\alpha} \in P_K(\mathbb{R}^n)$ for all $0 \le \alpha \le 1$,
- (ii) $[u]^{\alpha_2} \subset [u]^{\alpha_1}$ for $0 \le \alpha_1 \le \alpha_2 \le 1$,
- (iii) If $\{\alpha_k\}\subset[0,1]$ is a nondecreasing sequence converging to $\alpha>0$, then

$$[u]^a = \bigcap_{k>1} [u]^{a_k}$$
.

Conversely, if $\{A^{\alpha} \mid 0 \le \alpha \le 1\}$ is a family of subsets of R^n satisfying (i)-(iii), then there exists a $u \in E^n$ such that $[u]^{\alpha} = A^{\alpha}$ for $0 \le \alpha \le 1$ and $[u]^0 = \overline{\bigcup_{0 \le \alpha \le 1} A^{\alpha}} \subset A^0$.

Define $D: E^n \times E^n \rightarrow R^+ \cup \{0\}$ by the equation

nterval of real number R.

$$D(u, v) = \sup_{0 \le a \le 1} d([u]^a, [v]^a),$$

where a is the Hausdorff metric defined in $P_K(R^n)$.

The following definitions and theorems are given in [4].

Definition 2.1 A mapping $F: T \to E^n$ is strongly measurable if for all $\alpha \in [0,1]$ the set-valued mapping $F_\alpha: T \to P_K(R^n)$ defined by $F_\alpha(t) = [F(t)]^\alpha$ is Lebesque measurable, when $P_K(R^n)$ is endowed with the topology generated by the Hausdorff metric α and T is a subjection.

Definition 2.2 A mapping $F: T \rightarrow E^n$ is called *levelwise continuous* at $t_0 \in T$ if the set-valued mapping $F_a(t) = [F(t)]^a$ is continuous at $t = t_0$ with respect to the Hausdorff metric a for all $a \in [0,1]$.

A mapping $F: T \rightarrow E^n$ is called *integrably bounded* if there exists an integrable function k such that $|x| \le k(t)$ for all $x \in F_0(t)$.

Definition 2.3 Let $F: T \rightarrow E^n$. The integral of F over T, denoted by $\int_T F(t)dt$ or $\int_c^d F(t)dt$,

is defined levelwise by the equation

$$[\int_{T} F(t)dt]^{a} = \int_{T} F_{a}(t)dt$$

$$= \{\int_{T} f(t) | f: T \rightarrow R^{n} \text{ is a measurable selection for } F_{a}\}$$

for all $0 < \alpha \le 1$.

Also, a strongly measurable and integrably bounded mapping $F: T \rightarrow E^n$ is said to be integrable over T if $\int_T F(t)dt \in E^n$

Theorem 2.3 If $F: T \rightarrow E^n$ is strongly measurable and integrably bounded, then F is integrable.

It is known that $\left[\int_T F(t)dt\right]^0 = \int_T F_0(t) dt$ (see [4]).

Theorem 2.4 Let $F, G: T \rightarrow E^n$ be integrable and $\lambda \in R$. Then

(i)
$$\int_{T} (F(t) + G(t))dt = \int_{T} F(t)dt + \int_{T} G(t)dt,$$

(ii)
$$\int_{T} \lambda F(t) dt = \lambda \int_{T} F(t) dt$$
,

(iii) D(F, G) is integrable,

(iv)
$$D\left(\int_T F(t)dt, \int_T G(t)dt\right) \le \int_T D(F, G)(t) dt.$$

Definition 2.4 A mapping $F: T \rightarrow E^n$ is *Hukuhara differentiable at* $t_0 \in T$ if for some $h_0 > 0$ the Hukuhara differences

$$F(t_0 + \Delta t) - {}_{h}F(t_0)$$
, $F(t_0) - {}_{h}F(t_0 - \Delta t)$

exist in E^n for all $0 < \Delta t < h_0$ and if there exists an $F'(t_0) \in E^n$ such that

$$\lim_{\Delta t \to 0+} D((F(t_0 + \Delta t) - {}_{b}F(t_0))/\Delta t, F'(t_0)) = 0$$

and

$$\lim_{\Delta t \to 0+} D\left(\left(F(t_0) - {}_{h}F(t_0 - \Delta t)\right)/\Delta t, F'(t_0)\right) = 0.$$

Here $F'(t_0)$ is called the *Hukuhara derivative* of F at t_0 .

Definition 2.5 A mapping $F: T \rightarrow E^n$ is called differentiable at $t_0 \in T$ if for any $\alpha \in [0,1]$ the set-valued mapping $F_{\alpha}(\cdot) = [F(\cdot)]^a$ are Hukuhara differentiable at point t_0 with Hukuhara derivative $F_{\alpha}(t_0)$ for each $\alpha \in [0,1]$.

If $F: T \rightarrow E^n$ is differentiable at $t_0 \in T$, then we say that $F'(t_0)$ is the fuzzy derivative of

F(t) at the point t_0 .

Theorem 2.5 Let $F: T \rightarrow E^n$ be differentiable and assume that the derivative F' is integrable over T. Then for each $s \in T$, we have

$$F(s) = F(a) + \int_a^s F'(t)dt.$$

Definition 2.6 A mapping $f: T \times E^n \times E^n \to E^n$ is called *levelwise continuous* at a point $(t_0, x_0, y_0) \in T \times E^n \times E^n$ provided that for any fixed $\alpha \in [0, 1]$ and arbitrary $\varepsilon > 0$, there exist s a $\delta(\varepsilon, \alpha) > 0$ such that

$$d([f(t,x,y)]^{\alpha},[f(t_0,x_0,y_0)]^{\alpha})\langle \varepsilon,$$

whenever $|t-t_0| < \delta(\varepsilon, \alpha)$, $d([x]^a, [x_0]^a) < \delta(\varepsilon, \alpha)$ and $d([y]^a, [y_0]^a) < \delta(\varepsilon, \alpha)$ for all $t \in T$, $x, y \in E^n$.

3. Nonlocal Fuzzy Integro-Differential Equations

Assume that $f: I \times E^n \times E^n \to E^n$, $k: I^2 \times E^n \to E^n$ are levelwise continuous and $g: I^p \times E^n \to E^n$ is a function, where the interval I = [0, a]. Consider the fuzzy integrodifferential equation

$$x'(t) = f(t, x(t), \int_0^t k(t, s, x(s)) ds), \quad x(0) - g(t_1, t_2, \dots, t_p, x(\cdot)) = x_0.$$
 (3.1)

where $x_0 \in E^n$.

Definition 3.1 A mapping $x: H \rightarrow E^n$ is a solution to the problem (3.1) if it is levelwise continuous and satisfies the integral equation

$$x(t) = x_0 + g(t_1, t_2, \dots, t_p, x(\cdot)) + \int_0^t f(s, x(s), \int_0^s k(s, \tau, x(\tau)) d\tau) ds$$

for all $t \in I$.

We shall omit the proofs of following main theorems.

Theorem 3.1 Assume that

(i)A mapping $f: J_0 \to E^n$, $k: J_1 \to E^n$ are levelwise continuous and $g: J_1 \to E^n$ is a function, where $I_0 = I \times Y \times Y$, $I_1 = I^2 \times Y$ and $I_2 = I^p \times Y$,

$$\mathbf{y} = \{ \varphi \in E^n | H_1(\varphi, x_0) \leq b \}$$

is the space of continuous functions with $H_1(\varphi, \psi) = \sup_{0 \le t \le \xi} D(\varphi(t), \psi(t))$ and b is a positive number.

(ii) For each pairs (t, x, φ) , $(t, y, \psi) \in J_0$, (t, s, x), $(t, s, y) \in J_1$ and $(t_1, \dots, t_p, x(\cdot))$,

 $(t_1, \dots, t_p, y(\cdot)) \in J_{2}$ we have

$$D(f(t, x, \varphi), f(t, y, \psi)) \le L_1[D(x, y) + D(\varphi, \psi)],$$

$$D(k(t, s, x), k(t, s, y)) \le L_2D(x, y),$$

$$D(g(t_1, \dots, t_p, x(\cdot)), g(t_1, \dots, t_p, y(\cdot))) \le KD(x, y),$$
(3.2)

where $L_1, L_2, K > 0$ are given constants.

Then there exists a unique solution x = x(t) of (3.1) defined on the interval $[0, \xi]$

where
$$\xi = \min\{a, \frac{b-N}{M}, \frac{-L_1 + \sqrt{L_1^2 - 4L_1L_2(K-1)}}{2L_1L_2}\}$$
, $M = D(f(t, x, \varphi), \hat{0})$,

 $N=D(g(t_1,\cdots,t_p,x(\cdot)),\hat{0})$, $\hat{0}\in E^n$ such that $\hat{0}(t)=1$ for t=0 and 0 otherwise and for a ny $(t,x)\in J_0$.

Theorem 3.2 Suppose that f, k, g are the same as in Theorem 3.1. Let $x(t, x_0)$, $y(t, y_0)$ be solutions of equation (3.1) corresponding to x_0 , y_0 , respectively.

Then there exists a constant $\eta > 0$ such that

$$H_1(x(\cdot, x_0), y(\cdot, y_0)) \le \eta D(x_0, y_0)$$

for any
$$x_0, y_0 \in E^n$$
 and $\eta = \frac{1}{1 - K - \xi L_1 - \xi^2 L_1 L_2}$.

References

- [1] R.J.Aumann Integrals of set-valued functions J.Math.Anal.Appl. 12, 1965, 1-12.
- [2] L.Byszewski Theorems about the existence and uniqueness of solutions of a semilinearevol ution nonlocal Cauchy problem, J.Math.Anal.Appl., 162, 1991, 494-505.
- [3] C.Corduneanu Principles of Integral Equations, The Bronx, New York 1977.
- [4] O.Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24, 1987, 301-317.
- [5] C.V.Negoita and D.A.Ralescu Applications of Fuzzy Sets to Systems Analysis, Wiley, Ne w York, 1975.
- [6] J.Y.Park and Hyo Keun Han Existence of uniqueness theorem for a solution of fuzzy integral equations, Fuzzy Sets and Systems, to appear.
- [7] J.Y.Park and Hyo Keun Han Existence of uniqueness theorem for a solution of fuzzy differential equations, Int.J.Math.Math.Sci., to appear.
- [8] J.Y.Park, Hyo Keun Han and Kuk Hyeon Son Fuzzy differential equation with nonlocal condition, Fuzzy Sets and Systems, to appear.
- [9] M.L.Puri and D.A.Ralescu Fuzzy random variables, J.Math.Anal.Appl., 114, 1986, 409-422.
- [10] P.V.Subrahmanyan and S.K.Sudarsanam A note on fuzzy Volterra integral equations, Fuzzy Sets and Systems, 81, 1996, 237-240.