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1. Introduction and Preliminaries

Let Ey be the set of all upper semicontinuous convex fuzzy numbers with bounded

a -level intervals.

The purpose of this note is to investigate the existence of optimal control for the nonlinear
fuzzy contro! system.

() = a(Dx(D+ f(t, x(D) + u(P,

x(0) = x
where a: [0, T] — Ey is fuzzy coefficient, initial value x;, € Ey and f:[0, T] X Ey

(F.C.S)

— Ex nonlinear function satisfies a global Lipschitz condition and control function
u( t) = EN.

Given initial state x;, we seek the control #z; minimizing

= —l T 2
Ko = "Bt
while satisfying the terminal in equalities
W(D>.x, x' €eEy
where x(7T) is the value of trajectory of (F.D.S) at time 7T and x' is the target set.

In [10] P. Diamond and P. E. Kloeden proved the fuzzy optimal control for the following
system :

2D = a(Dx(D + u(d), x0)=x,

where x(+),u( ) €Ey
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Recently Young-Chel Kwun and Dong-Gun Park ([13]) proved the fuzzy optimal control for
the following system :

(D = a(Dx(D+ A+ u(d), x(0)=x,

on assumption that for any given 7T > there exists some compact interval valued function

MT)=[M(T),M(T)] such that

MD = [ S(T-9f9ds, (M) = LMI(D), MX D).

We consider properties of the fuzzy number and metrics.
A fuzzy subset of R” is defined in terms of a membership function which assigns to each

point x € R” a grade of membership in the fuzzy set. Such a membership function

u:R"—[0,1]
is used synonomously to denote the corresponding fuzzy set.
Assumption 1. % maps R" onto [0,1].
Assumption 2. [#]° is a bounded subset of R".
Assumption 3. % is upper semicontinuous.

Assumption 4. u is fuzzy convex.

We denote by E” the space of all fuzzy subsets # of R” which satisfy Assumptions 1-4;
that is, normal, fuzzy convex, upper semicontinuous fuzzy sets with bounded supports.

In particular =1, denote by E' the space of all fuzzy subsets % of R which satisfy
Assumptions 1-4.

A fuzzy number a in real line R is a fuzzy set characterized by a membership function

2, as g, R — [0,1].

A fuzzy number a is expressed as a==f R,u,,(x) /x with the understanding that
xeE

#.(x) €[0,1] represent the grade of membership of x in a and fdenotes the union of

pox)/x's.

A fuzzy number @ in R is said to be convex if for any real numbers x,y,z € R with
x<y<z,

() = min {g(x), z,(2)}.

A fuzzy number a in R is called normal if the following holds

max , #.(x) =1.

Let E, be the set of all upper semicontinuous convex fuzzy numbers with bounded « -level
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intervals. This means that if a € Ey then the a -level set

[al°={xeRlalx) =2 a, 0 a <1}

is a closed bounded interval which we denote by
[a] “=[a], a7]
and there exists a #) € R such that a(#) = 1.

Two fuzzy numbers a and b are called equal a= b, if a{x) = b(x) for all x € R.
It follows that

a=bs [al®=1[b]° for all a=(0,1] .

A fuzzy number a may be decomposed into its level sets through the resolution identity
1
_ a
a= fo alal® ,
where a[al? is the product of a scalar @ with the set [2]® and f is the union of [a]®

‘s with @ ranging from Qto 1.
The support I', of a fuzzy number a is defined, as a special case of level set, by the

following
Iy= {xlp(x)>0}.

A fuzzy number @ in R is said to be positive if Q< a;< a; holds for the support

I'y=1[ay,a;] of a, that is, I', is in the positive real line. Similarly, @ is called negative

if aj<a;<0 and zero if ;<0< ay,

Lemma 1.1. ([12]) If a, b € Ey, then for a (0,1],
[a+8]7 = [af + b}, a%+ b7],
[a - 5] = [min{aib]}, max{aidf}] (i,j=17),

la— 8] = [a] — b7, a7 — b7].

Lemma 1.2 ([12]) Let [af, a7], 0<a<1, be a given family of nonempty intervals.

If (1) [af,a®1clal, a®] for 0<a<p and (2) [ E{ga;a', ;g‘;af‘l = [af, af]

whenever (a,;) 1is nondecreasing sequence converging toa € (0,1], then the family
[a], al]l,0<{a<1, represents the a -level sets of a fuzzy number c€Ey .

Conversely, if [af, a}],0{ @<, are the a -level sets of a fuzzy number a&Ey , then the
conditions (1) and (2) holds true.

For 1 <p< oo we define the L,-metric 6, on Kc" by

(LD (A B) = ([ Is(x,4) = s(x. B’ u(a))



for all A,Be K:", where s( -,A) is the support function of A, u# is Lebesgue measure
on the unit sphere S” ' and K" consisting of all nonempty compact convex subsets of
R™. The L,-metricd, on K", which are, essentially, directly defined in terms of support

functions, give rise to another class of metric on E”.

There are the L, ,-metric p, for 1 <p< o defined by
! a 1/
12) pxu,0) = ([ 8Ll [6])da)

for all w,v€ E”. In view of definition of metric §, on K", we can rewrite (1.2) more

transparently as

13 o) = ([ [ Isha,d - sla.0)luddda) ™.

2. Fuzzy optimal control

We consider the fuzzy optimal control of the following fuzzy control system:

x(8) = a(Dx(D + (¢, (D) + u(D,
(F.C.S)
x(0) = xq,

with fuzzy coefficient a:[0, 71 — Ey, initial value %y € Exy and f£:[0, TI1XEy — Ey

satisfies a global Lipschitz condition and control # in C([0, 7: Ep).

For u,veEy

oo, 0= [ [ 158, 0~ 58, Dldu()dp.

where g( +) is unit Lebesgue measure on S" !,

In particular, define |lzll = 0,(%, {0}).Observe that if #=1 and [u]® = [«f, «’], then

lall? = [ (G + ().

Our problem is to minimize

_ 1 (" 2
@D Ty = [l
subject to
(2.2) H(T)>,x', x' €Ey.

The function ¢t + a(Hx(# is Lipschitz ,
px(ax, ay) < max ,eo. i 1af(D1, las(Dioxx, ¥).

Then (F.C.S) has a unique solution on [0,T] for a given continuous control z( « ).



For given u, the trajectory x(?) is represented by

t t
23) () = S(Dxo + [ S(t=9f(s, s(Nds+ [ S(t—dauls)ds, 0=t <T
where S(# is a fuzzy number

(S = [85(0), SAO] = Lexp ([ a(s)ds), exp{ [} ai(s)as)].

write [2()]7 = [7(9), x%(#) ], with a like notation for «(#).
Let P be the positive orthant in R”. For a given @ 1/, defined P,C E";;, by
P.={ue E"p:[1]°CP).

If ueP,, write u>,0 and if wu—pv>,0 write u>,v, where -, is Hukuhara
difference and if %> ,0 and only if % = (0 with necessity a. The positive dual cone of P,
is the closed convex cone P,°cC E " Lip, defined by

P2 ={pe E” ,:<u,p>=0 for all uP,},
where {u,p> = p(u) is the value at u€ E”";; of the linear functional p: E”;;, — R, the
space of which is denoted by E "*L,',,.

The significance of P,,GB in our problem is that Lagrange multipliers for local optimization
live in this dual cone. Local necessity coditions for (2.1) and (2.2) are more accessible when
there is some notation of differentiability of the uncertain constraint functions G= x(7T)—,
x'. Let IT: E';;, — C(IxS" be the canonical embedding where S°= {—1, +1}. The
fuzzy function G is said to be (Frechet) differentiable at &, if the map G=1I- G is
Frechet differentiable at &;. A point &; is said to be a regular point of the uncertain
constraint G(&) > ,0 if G(&)>,0 and there is he R such that G(&)+ DG(&)h>,0.
Our constraint function be compact-interval valued, G(&) = [G,(&), G(H], and J: R" — R.
The support function of G(€) is

-G8 if x=—1
IH(G(& )x) = Sgx) =
+ G, (&) if x= +1

since "= (-1, +1}. Then II- G= S¢(.) is obviously differentiable if and only if G,,
G, are differentiable, and S gg(—1) = —~V GA&), S¢ey(+1) = vVG(&). The element of
P,®can be seen to be of the form [dg+ [43d +1_1A_,, =A_,(+1)where [, are

nonnegative constants, the A; map S°to R and A,(—1) =0, A, (+1) 20, A_, (=1
=0 and A,(—1) = Ay(+1)<0.So each element of P,,GB acts like a triple of nonnegative

constants (A -1, Aq,3+1), A (Sea(+))=(QA_1—2)GLE +(Ag+ A 4+))G,(8&), which is
always nonneagtive since Ap(G (&) —G[(&))=0. If & is a regular point which is a solution

to the constrained minimization, the Kuhn-Tucker conditions, namely that there exists A*>0



so that
VIE) + A'(S gy () =0

A (S - N =0
can be written as

VIE) + (A=A VGLE) + (A +A 1) VG(&) =0
(’{ -I_AO)GI(50)+(/10+/‘ +1)Gr(50) =0.

for some nonnegative reals A _;, dg, 4 4+,.
This extends quite naturally to a fuzzy real number constraint with necessity @, as follows :
Define the function G:R" — E! by
[G(&H1 =[GI(&, GXOI,
where for each & € R”, G7(£) is monotone, nondecreasing in @ and G2(&) is monotone

nonincreasing in @ (since o< g implies that [G(&]°C[G(E)]%). Suppose further that
Gi(-) and Gy(-) are differentiable in & for each a €. Write, for each fixed a,
G(& >,0 if and only if [G(£)]*= 0. Then, if & is a regular point of the constraint
G(&) >, 0 minimizing J(#), there exist nonnegative real numbers A |, A, A ,; satisfying

V](u)+ (Aﬁl“ﬂo)VEG‘[J(Eo) +(/{0+/1 +1)VEGj($0) =O

(/{ —1_/10)67(50) + (/{0‘*‘/1 +1)G‘:(Eo) = 0

Theorem 2.1. There exists fuzzy control w#,(#) for the Fuzzy optimal control problem (2.1)

and (2.2) such that
Jup) = minJ(w)

= L [T L1sHT-9 2 A SAD~ [ ST D, Koy )?

+SHT—9) 72 (x), - ST, — forsf( T— 18 72t x(£) d)*1dpd
which is attained when

()= SADxh— [ SHT= DA D)t

L-(8)= TSKT—3)° ’
()2— SU Dk, — [ SUT— DA D)t
G TSHT—9)° :

Proof. Omitted.
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