HMAY HA w2 2] e
a-%F 43 AosA

The a -level controllability for the

nonlinear fuzzy differential systems

A9, A
Fotistm AAzste 4t
Department of Mathematics, Dong-A University,
840, Hadan-dong, Saha-Ku, Pusan, Korea

29 7]
Tgdista A A
Department of Computer Sciences & Statistics, Dong-Eui University,
24, Gaya2-dong, Jin-Ku, Pusan, Korea

1. Introduction and Preliminaries

Let Ey be the set of all upper semicontinuous convex fuzzy numbers with bounded «a -level
intervals.

The purpose of this note is to investigate the a-level controllability of nonlinear fuzzy
control system.

2(H) = a(Hx(H) + F(t, x(D) + u (),
(F.DE)

X(O) =Xy
where a: [0, 7] — Ey is fuzzy coefficient, x; € Ey is initial value and nonlinear function

7:[0, T1 x Ey — Ey satisfies a global Lipschitz condition and control function (%) is
fuzzy number.

We find the a-level exact controllability conditions of the (F.C.S) on the assumption that the

following linear fuzzy control system (F.CS 1) is
a -level exact controllable :
2D = a(Hx(D + u(D ,

(FCS.)
x(O) =x5 € EN .



We consider properties of the fuzzy number and metrics.
A fuzzy subset of R” is defined in terms of a membership function which assigns to each

point x € R” a grade of membership in the fuzzy set. Such a membership function

u:R"— [0,1]
is used synonomously to denote the corresponding fuzzy set.
Assumption 1. % maps R” onto [0,1].
Assumption 2. [#]° is a bounded subset of R”.
Assumption 3. # is upper semicontinuous.

Assumption 4. u is fuzzy convex.

We denote by E” the space of all fuzzy subsets % of R” which satisfy Assumptions 1-4;
that is, normal, fuzzy convex, upper semicontinuous fuzzy sets with bounded supports.

In particular n=1, denote by E' the space of all fuzzy subsets % of R which satisfy
Assumptions 1-4.

A fuzzy number a in real line R is a fuzzy set characterized by a membership function
U, as p, R — 0,11

A fuzzy number a is expressed as a= fekﬂa(x) /x with the understanding that
X

#(x) =[0,1] represent the grade of membership of x in & and f denotes the union of

12)]x's.

A fuzzy number a in R is said to be convex if for any real numbers x,y,z€ R with

1< y<L 2z,
#,(¥) 2 min {p,(x), p#(2)}.

A fuzzy number ¢ in R is called normal if the following holds

max , u(x) =1,

Let Ex be the set of all upper semicontinuous convex fuzzy numbers with bounded a -level

intervals. This means that if @ € Ey then the a -level set

[a)"={xeRlalx) 2 a, 0{ a <1}
is a closed bounded interval which we denote by
[al “=[af, a7l
and there exists a f; € R such that a(#) = 1.

Two fuzzy numbers a and & are called equal a= b, if a(x) = b(x) forall x €R.
It follows that

a=bo [al® =[8]" for al a=(0,1] .



A fuzzy number ¢ may be decomposed into its level sets through the resolution identity
1
a= f alal® ,
0
where «@[a]” is the product of a scalar @ with the set [a]® and f is the union of

[a]® 's with @ ranging from Qto 1.

The support I, of a fuzzy number a is defined, as a special case of level set, by the
following

o= {xlu,(x)>0}.
A fuzzy number a2 in R is said to be positive if 0<a@;{a, holds for the support
I'y=1[ay,a;] of a, that is, I', is in the positive real line. Similarly, @ is called negative

if @<a3;<0 and zero if g;<0<a,

Lemma 1.1. ([12)) If a, b€ Ey, then for a<(0,1],
[a+b]° = [a]+ b7, a2+ b7],

la - b]°= [min{a]b]}, max {afbj}] (i,j=1,7),

la—8]° =1[a] — b7, a5 — b7] .

Lemma 1.2 ([12]) Let [a7, a7]l, 0<a<1, be a given family of nonempty intervals.
If (1) [a&f,a?1Caf, a%] for 0<ea<B and (2) [ma;", lima,"] = [af, af]

whenever (@) is nondecreasing sequence converging toa <(0,1], then the family

[a?, a?],0<a<1, represents the a-level sets of a fuzzy number a€Ey .

Conversely, if [a7, a7],0< a<1, are the a -level sets of a fuzzy number a<Ey , then the
conditions (1) and (2) holds true.

Let x be a point in R” and A be a nonempty subset of R". We define the distance
d(x,A) from x to A by

1.1 dlx, A =inf{llx—all:acsA}.

Now let A and B be nonempty subsets of R". We define the Hausdorff separation of B
from A by

(1.2) di(B, A) = sup{d(b, A): b =B},

in general dy(A4, B) =dy(B, A) .

We define the Hausdorff distance between nonempty subsets of A and B of R” by
(1.3) dy(A,B)= max{ di{A,B) , di{B,A) }.
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This is now symmetric in A and B. Consequently

(1) di{A,B) >0 with dg(A, B)=0 if and only if A= B,
(2) di(A, B) = dy(B, A)
(3) du(A,B) < dy(A,O)+dy(C, B)

for any nonempty subsets of A, B and C of R". The Hausdorff distance (1.3) is a metric,
the Hausdorff metric.

The supremum metric dw on E” is defined by
(14) delu, v) = sup{dg({]®, [0]°): a= (0,11} forall u,ve E"
and is obviously metric on E”.

The supremum metric H;on C([0, T}: E™) is defined by
(1.5) H(x,y) = sup{do(x(d, WH): t[0,T1} for all x,ye([0, T]: E").

2. The e¢-level controllability of nonlinear fuzzy differential system

We consider the a-level controllability of nonlinear fuzzy control system.

(D = a(Dx(D+ f(4,x(D) + u(d),
x2(0) = x

where a: [0, 7] — Ey is fuzzy coefficient, initial value x; = Ey and control function

(FDE)

#: [0, T1 = Ey and nonlinear function f:[0, 7] x Ey — Ey satisfies a global Lipschitz

condition. i.e., there exists a finite constant k> ( such that

il [ A5, N7, [As, E(N]D) <k dy( (£, [£(])
for all 51(3) R EZ(S) EEN.
The (F.C.S) is related to the following fuzzy integral system :
D= S+ [ SU—9s, a(Nds+ [ St=9)u(9)ds,
x(0) = Xy € Ey.

(F.IS)
Definition 2.1. The (F.LS) is a -level exact controllable if, there exists (£ such that the

fuzzy solution x(9 of (F.LS) satisfies [x(7)]° = [x']° where x' is target set.

We assume that the following linear fuzzy control system with respect to nonlinear fuzzy
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control system (F.C.S) :

2D = a(Hx(D + u(d) ,
(FCS 1)
x(0) =%y € Ey

is a-level exact controllable. Then

(D= [S(Dxo + fOTS(T—s)u(s)ds]"

T T
= [SU D%+ fo SUT—s) w(s)ds , SUADx%, + fo SUT— s) u%(s) ds)Defined
= [(hHy, («Hel.
the fuzzy mapping g: P(R) —E, by
T —
fo S T—s)uv(s)ds, vC Iy,

g (v)=
0, otherwise.

Then there exist ;" (i=1{, #) such that

g/ (v)= for SE(T—s)vls)ds, vis) €l u (s), (9],

g (v)= fOT S, (T—9) vs)ds, vs)elu'(s), u, (5],

We assume that g£,", &, are bijective mappings. Hence a-level of u(s) are

[w()]= [ui(s), u3(s)]
= [( &7 I-SHD 2N, ( &) 7 ()T = SUDxY, ()]

Thus we can be introduced u(s) of nonlinear system Then substitutin

[2()]7= [uj(s), us(s)]
= [ &7 &= SH(Dxy— fOTS?(T—S)f‘z’(s,x(S))dS),

(&7 ()8 SUDA,— [ SUT= 975, x(9)ds) .
[ I°

= [SHD#4+ [ SHT—9f5(s, () ds
T a T
+ [ SHT=9 (&N TG = SH Dt~ [ SHT= A5 (N ddds
SAD s+ [ SUT 9 s (s

T e T
+ [ SUT=9C &7 D= SUDx,— [ SUT= 9735, 1) ddas]



this expression into the (F.I1S) yields a-level of x(7T)

= [SH(Daf+ [ "8 T— ) (s, 2(8)) ds
+E - CEDTE - SUDaY— [ SHT- 9715, x(9) d9),
SUDx5+ [ " S% T— 5) s, () ds

+ & CEDTE-SUDS,~ [ SUT=9 /s () )
LD (=121

We now set

0x()) =, S(hx+ ‘S(t— 9 As, 2(s)) ds

+ ['S(t=5) &7 &~ S(Dxo— [ S(T— A5, 2()ds)ds
o g 0 o ’ »

where the fuzzy mappings §_1 is satisfied above statements.

Notice that @x(7T)=, x', which means that the control (#) steers the (F.C.S) from the

origine to x' in time T provided we can obtain a fixed point of the nonlinear operator @ .
Assume that the following hypotheses:

(H1) (F.C.S 1) is a-level exact controllable.

(H2) Inhomogeneous term f:[0, T] X Ey— Ey satisfies a global Lipschitz condition. i.e., there

exists a finite constant constant £> 0 such that

dr( [ As, &N, [ As, &(N]?) <k du([£(9]7, [£()])
for all EI(S) , 52(5) EEN.

Theorem 2.1. Suppose that hypotheses (H1), (H2) are satisfied. Then the state of the (F.LS)

can be steered from the initial value %, to any final state x' in time T.

Proof. Omitted.

_49_



References

[1] D.Dubois and H.Prade, Towards Fuzzy Differential Calculus Part I Integration of fuzzy
mappings, Fuzzy Sets and Systems, 8, 1-17, (1982).

[2] D.Dubois and H.Prade, Towards Fuzzy Differential Calculus Part 2:Integration on fuzzy
intervals, Fuzzy Sets and Systems, 8, 105-116, (1982).

[3]1 D.Dubois, H.Prade, Towards Fuzzy Differential Calculus Part 3:Differentiation, Fuzzy Sets
and Systems, 8, 225-234, (1982).

[4] D.G.Luenberger, Optimization by vector space methods, John Wiley and Sons, Inc. (1969)
[5] D.GPark, G.T.Choi and Y.C.Kwun, Existence and uniqueness of solution for the fuzzy
differential equation.

[6] L.M.Hocking, Optimal Control an introduction to the theory with applications, Oxford
applied Mathematics and Computing Science series Clarendon Press, (1991).

[71 MMizumoto and K.Tanaka, Some properties of fuzzy numbers, North-Holland Publishing
Company, (1979).

[8] Osmo Kaleva, Fuzzy differential equations, Fuzzy set and System. 24, 301-317, (1987).

[9] P.Diamand and P.Kloeden, Metric space of Fuzzy sets, World scientific., (1994).

[10] P.Diamond and P.E.XKloeden, Optimization under uncertaintly, Proceedings 3rd.IPMU
Congress,B.Bouchon-Meunier and R.R.Yager, Paris, 247-249, (1990)

[11] P.V.Subrahmanyam, S.K.Sudarsanam, A note fuzzy Volterra integral equations, Fuzzy
Sets and Systems. 81, 237-240, (1996).

[12] S.Seikkala, On The Fuzzy Initial Value problem, Fuzzy Sets and Systems. 24, 319-330,
(1987).

[13] Y.CKwun and D.G.Park, Optimal control problem for fuzzy differential equations,
Proceedings of the Korea-Vietnam Joint Seminar, 103-114, (1998).

[14] Y.CKwun, J.Y.Park and J.W.Ryu, Approximate Controllability and Controllability for
delay Volterra System, Bulletin of the Korean Mathematical Society., 28, No.2 ,(1991).



