비선형 퍼지 미분 시스템에 대한 α-수준 완전 제어가능성

The α -level controllability for the nonlinear fuzzy differential systems

권영철, 강점란

동아대학교 자연과학대학 수학과 Department of Mathematics, Dong-A University, 840, Hadan-dong, Saha-Ku, Pusan, Korea

강만기

동의대학교 전산통계학과

Department of Computer Sciences & Statistics, Dong-Eui University, 24, Gaya2-dong, Jin-Ku, Pusan, Korea

1. Introduction and Preliminaries

Let E_N be the set of all upper semicontinuous convex fuzzy numbers with bounded α -level intervals.

The purpose of this note is to investigate the α -level controllability of nonlinear fuzzy control system.

(F.D.E)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)) + u(t), \\ x(0) = x_0 \end{cases}$$

where $a:[0,T] \to E_N$ is fuzzy coefficient, $x_0 \in E_N$ is initial value and nonlinear function $f:[0,T] \times E_N \to E_N$ satisfies a global Lipschitz condition and control function u(t) is fuzzy number.

We find the α -level exact controllability conditions of the (F.C.S) on the assumption that the

following linear fuzzy control system (F.C.S 1) is

 α -level exact controllable :

(F.C.S.1)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + u(t), \\ x(0) = x_0 \in E_N. \end{cases}$$

We consider properties of the fuzzy number and metrics.

A fuzzy subset of \mathbb{R}^n is defined in terms of a membership function which assigns to each point $x \in \mathbb{R}^n$ a grade of membership in the fuzzy set. Such a membership function

$$u: \mathbb{R}^n \to [0,1]$$

is used synonomously to denote the corresponding fuzzy set.

Assumption 1. u maps R^n onto [0,1].

Assumption 2. $[u]^0$ is a bounded subset of R^n .

Assumption 3. u is upper semicontinuous.

Assumption 4. u is fuzzy convex.

We denote by E^n the space of all fuzzy subsets u of R^n which satisfy Assumptions 1-4; that is, normal, fuzzy convex, upper semicontinuous fuzzy sets with bounded supports.

In particular n=1, denote by E^1 the space of all fuzzy subsets u of R which satisfy Assumptions 1-4.

A fuzzy number a in real line R is a fuzzy set characterized by a membership function μ_a as $\mu_a: R \to [0,1]$.

A fuzzy number a is expressed as $a=\int_{x\in R}\mu_a(x)/x$ with the understanding that $\mu_a(x)\in[0,1]$ represent the grade of membership of x in a and \int denotes the union of $\mu_a(x)/x$'s.

A fuzzy number a in R is said to be convex if for any real numbers $x, y, z \in R$ with $x \le y \le z$,

$$\mu_a(y) \ge \min \{\mu_a(x), \mu_a(z)\}.$$

A fuzzy number a in R is called normal if the following holds

$$\max_{x} \mu_{a}(x) = 1.$$

Let E_N be the set of all upper semicontinuous convex fuzzy numbers with bounded α -level

intervals. This means that if $a \in E_N$ then the α -level set

$$[a]^{\alpha} = \{x \in R \mid a(x) \geq \alpha, 0 < \alpha \leq 1\}$$

is a closed bounded interval which we denote by

$$[a]^{\alpha} = [a_{i}^{\alpha}, a_{r}^{\alpha}]$$

and there exists a $t_0 \in R$ such that $a(t_0) = 1$.

Two fuzzy numbers a and b are called equal a = b, if a(x) = b(x) for all $x \in R$. It follows that

$$a=b \Leftrightarrow [a]^{\alpha}=[b]^{\alpha}$$
 for all $\alpha \in (0,1]$.

A fuzzy number a may be decomposed into its level sets through the resolution identity

$$a = \int_0^1 \alpha [a]^{\alpha} ,$$

where $\alpha[a]^{\alpha}$ is the product of a scalar α with the set $[a]^{\alpha}$ and \int is the union of $[a]^{\alpha}$'s with α ranging from 0 to 1.

The support Γ_a of a fuzzy number a is defined, as a special case of level set, by the following

$$\Gamma_a = \{x | \mu_a(x) > 0 \}$$

A fuzzy number a in R is said to be positive if $0 < a_1 < a_2$ holds for the support $\Gamma_a = [a_1, a_2]$ of a, that is, Γ_a is in the positive real line. Similarly, a is called negative if $a_1 \le a_2 < 0$ and zero if $a_1 \le 0 \le a_2$.

Lemma 1.1. ([12]) If $a, b \in E_N$, then for $a \in (0, 1]$, $[a+b]^a = [a_i^a + b_l^a, a_r^a + b_r^a],$ $[a \cdot b]^a = [\min\{a_i^a b_j^a\}, \max\{a_i^a b_j^a\}] \quad (i, j = l, r),$ $[a-b]^a = [a_i^a - b_r^a, a_r^a - b_l^a].$

Lemma 1.2 ([12]) Let $[a_l^{\alpha}, a_r^{\alpha}]$, $0 < \alpha \le 1$, be a given family of nonempty intervals.

If (1)
$$[a_l^{\beta}, a_r^{\beta}] \subset [a_l^{\alpha}, a_r^{\alpha}]$$
 for $0 < \alpha \le \beta$ and (2) $[\lim_{k \to \infty} a_l^{\alpha_k}, \lim_{k \to \infty} a_r^{\alpha_k}] = [a_l^{\alpha}, a_r^{\alpha}]$

whenever (a_k) is nondecreasing sequence converging to $a \in (0,1]$, then the family $[a_l^a, a_r^a], 0 \le a \le 1$, represents the α -level sets of a fuzzy number $a \in E_N$.

Conversely, if $[a_i^a, a_r^a]$, $0 \le a \le 1$, are the α -level sets of a fuzzy number $a \in E_N$, then the conditions (1) and (2) holds true.

Let x be a point in \mathbb{R}^n and A be a nonempty subset of \mathbb{R}^n . We define the distance d(x,A) from x to A by

$$(1.1) d(x, A) = \inf\{ ||x - a|| : a \in A \}.$$

Now let A and B be nonempty subsets of R^n . We define the Hausdorff separation of B from A by

(1.2)
$$d_H^{\bullet}(B, A) = \sup \{d(b, A) : b \in B\},$$

in general $d_H^*(A, B) \neq d_H^*(B, A)$.

We define the Hausdorff distance between nonempty subsets of A and B of R^n by (1.3) $d_H(A,B) = \max \{ d_H^*(A,B), d_H^*(B,A) \}.$

This is now symmetric in A and B. Consequently

(1)
$$d_H(A, B) \ge 0$$
 with $d_H(A, B) = 0$ if and only if $\overline{A} = \overline{B}$.

(2)
$$d_H(A, B) = d_H(B, A)$$

(3)
$$d_H(A, B) \le d_H(A, C) + d_H(C, B)$$

for any nonempty subsets of A, B and C of R^n . The Hausdorff distance (1.3) is a metric, the Hausdorff metric.

The supremum metric d_{∞} on E^{n} is defined by

(1.4)
$$d_{\infty}(u, v) = \sup\{d_H([u]^a, [v]^a) : a \in (0, 1]\}$$
 for all $u, v \in E^n$ and is obviously metric on E^n .

The supremum metric H_1 on $C([0, T]: E^n)$ is defined by

(1.5)
$$H_1(x, y) = \sup\{d_{\infty}(x(t), y(t)) : t \in [0, T]\} \text{ for all } x, y \in C([0, T] : E^n).$$

2. The a-level controllability of nonlinear fuzzy differential system

We consider the α -level controllability of nonlinear fuzzy control system.

(F.D.E)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)) + u(t), \\ x(0) = x_0 \end{cases}$$

where $a:[0,T]\to E_N$ is fuzzy coefficient, initial value $x_0\in E_N$ and control function $u:[0,T]\to E_N$ and nonlinear function $f:[0,T]\times E_N\to E_N$ satisfies a global Lipschitz condition i.e., there exists a finite constant k>0 such that

$$d_H([f(s, \xi_1(s))]^a, [f(s, \xi_2(s))]^a) \le k d_H([\xi_1(s)]^a, [\xi_2(s)]^a)$$
 for all $\xi_1(s)$, $\xi_2(s) \in E_N$.

The (F.C.S) is related to the following fuzzy integral system:

(F.I.S)
$$\begin{cases} x(t) = S(t)x_0 + \int_0^t S(t-s)f(s, x(s))ds + \int_0^t S(t-s)u(s)ds, \\ x(0) = x_0 \in E_N. \end{cases}$$

Definition 2.1. The (F.I.S) is α -level exact controllable if, there exists u(t) such that the fuzzy solution x(t) of (F.I.S) satisfies $[x(T)]^{\alpha} = [x^1]^{\alpha}$ where x^1 is target set.

We assume that the following linear fuzzy control system with respect to nonlinear fuzzy

control system (F.C.S):

(F.C.S 1)
$$\begin{cases} x(t) = a(t)x(t) + u(t) \\ x(0) = x_0 \in E_N \end{cases}$$

is α -level exact controllable. Then

$$\begin{split} [x(T)]^a &= [S(T)x_0 + \int_0^T S(T-s) \, u(s) \, ds]^a \\ &= [S_l^a(T)x_{0l}^a + \int_0^T S_l^a(T-s) \, u_l^a(s) \, ds , S_r^a(T)x_{0r}^a + \int_0^T S_r^a(T-s) \, u_r^a(s) \, ds] \text{Defined} \\ &= [(x^1)_l^a, (x^1)_r^a]. \end{split}$$

the fuzzy mapping $\hat{g}: \hat{P}(R) \rightarrow E_N$ by

$$\widetilde{g}^{a}(v) = \begin{cases} \int_{0}^{T} S^{a}(T-s) \ v(s) \, ds, & v \subseteq \overline{\Gamma}_{u}, \\ 0, & \text{otherwise.} \end{cases}$$

Then there exist \hat{g}_{i}^{a} (i = l, r) such that

$$\tilde{g}_{l}^{a}(v) = \int_{0}^{T} S_{l}^{a}(T-s) v_{l}(s) ds, \quad v_{l}(s) \in [u_{l}^{a}(s), u^{1}(s)],$$

$$\hat{g}_r^a(v) = \int_0^T S_r^a(T-s) v_r(s) ds$$
, $v_r(s) \in [u^1(s), u_r^a(s)]$.

We assume that \tilde{g}_{l}^{a} , \tilde{g}_{r}^{a} are bijective mappings. Hence α -level of u(s) are

$$[u(s)]^{a} = [u_{l}^{a}(s), u_{r}^{a}(s)]$$

$$= [(\widehat{g_{l}}^{a})^{-1}((x^{1})_{l}^{a} - S_{l}^{a}(T)x_{0l}^{a})(s), (\widehat{g_{r}}^{a})^{-1}((x^{1})_{r}^{a} - S_{r}^{a}(T)x_{0r}^{a})(s)].$$

Thus we can be introduced u(s) of nonlinear system Then substitutin

$$[u(s)]^{\alpha} = [u_{l}^{\alpha}(s), u_{r}^{\alpha}(s)]$$

$$= [(\widehat{g_l}^a)^{-1}((x^1)_l^a - S_l^a(T)x_{0l}^a - \int_0^T S_l^a(T-s)f_l^a(s,x(s))ds),$$

$$(\widehat{g_r}^a)^{-1}((x^1)_r^a - S_r^a(T)x_{0r}^a - \int_0^T S_r^a(T-s)f_r^a(s,x(s))ds)].$$

 $[x(T)]^a$

$$= \left[S_{l}^{a}(T)x_{0l}^{a} + \int_{0}^{T} S_{l}^{a}(T-s)f_{l}^{a}(s,x(s))ds + \int_{0}^{T} S_{l}^{a}(T-s)(\widehat{g_{l}}^{a})^{-1}((x^{1})_{l}^{a} - S_{l}^{a}(T)x_{0l}^{a} - \int_{0}^{T} S_{l}^{a}(T-s)f_{l}^{a}(s,x(s))ds \right] + \int_{0}^{T} S_{r}^{a}(T-s)(\widehat{g_{r}}^{a})^{-1}((x^{1})_{r}^{a} - S_{r}^{a}(T)x_{0r}^{a} - \int_{0}^{T} S_{r}^{a}(T-s)f_{r}^{a}(s,x(s))ds + \int_{0}^{T} S_{r}^{a}(T-s)(\widehat{g_{r}}^{a})^{-1}((x^{1})_{r}^{a} - S_{r}^{a}(T)x_{0r}^{a} - \int_{0}^{T} S_{r}^{a}(T-s)f_{r}^{a}(s,x(s))ds \right]$$

this expression into the (F.I.S) yields α -level of x(T)

$$= [S_{l}^{a}(T)x_{0l}^{a} + \int_{0}^{T} S_{l}^{a}(T-s)f_{l}^{a}(s,x(s))ds + \widetilde{g}_{l}^{a} \cdot (\widetilde{g}_{l}^{a})^{-1}((x^{1})_{l}^{a} - S_{l}^{a}(T)x_{0l}^{a} - \int_{0}^{T} S_{l}^{a}(T-s)f_{l}^{a}(s,x(s)) ds, S_{r}^{a}(T)x_{0r}^{a} + \int_{0}^{T} S_{r}^{a}(T-s)f_{r}^{a}(s,x(s))ds + \widetilde{g}_{r}^{a} \cdot (\widetilde{g}_{r}^{a})^{-1}((x^{1})_{r}^{a} - S_{r}^{a}(T)x_{0r}^{a} - \int_{0}^{T} S_{r}^{a}(T-s)f_{r}^{a}(s,x(s))ds)] = [(x^{1})_{l}^{a},(x^{1})_{r}^{a}] = [x^{1}]^{a}.$$

We now set

$$\Phi x(t) = {}_{a} S(t)x_{0} + \int_{0}^{t} S(t-s)f(s,x(s)) ds + \int_{0}^{t} S(t-s) \ \tilde{g}^{-1}(x^{1} - S(T)x_{0} - \int_{0}^{T} S(T-s)f(s,x(s)) ds) ds,$$

where the fuzzy mappings \hat{g}^{-1} is satisfied above statements.

Notice that $\varphi x(T) = {}_{\alpha} x^1$, which means that the control u(t) steers the (F.C.S) from the origine to x^1 in time T provided we can obtain a fixed point of the nonlinear operator φ . Assume that the following hypotheses:

(H1) (F.C.S 1) is α -level exact controllable.

(H2) Inhomogeneous term $f: [0, T] \times E_N \to E_N$ satisfies a global Lipschitz condition. i.e., there exists a finite constant constant k > 0 such that

$$d_H([f(s,\xi_1(s))]^a,[f(s,\xi_2(s))]^a) \le k \, d_H([\xi_1(s)]^a,[\xi_2(s)]^a)$$
 for all $\xi_1(s)$, $\xi_2(s) \in E_N$.

Theorem 2.1. Suppose that hypotheses (H1), (H2) are satisfied. Then the state of the (F.I.S) can be steered from the initial value x_0 to any final state x^1 in time T.

Proof. Omitted.

References

- [1] D.Dubois and H.Prade, Towards Fuzzy Differential Calculus Part 1:Integration of fuzzy mappings, Fuzzy Sets and Systems, 8, 1-17, (1982).
- [2] D.Dubois and H.Prade, Towards Fuzzy Differential Calculus Part 2:Integration on fuzzy intervals, Fuzzy Sets and Systems, 8, 105-116, (1982).
- [3] D.Dubois, H.Prade, Towards Fuzzy Differential Calculus Part 3: Differentiation, Fuzzy Sets and Systems, 8, 225-234, (1982).
- [4] D.G.Luenberger, Optimization by vector space methods, John Wiley and Sons, Inc. (1969)
- [5] D.G.Park, G.T.Choi and Y.C.Kwun, Existence and uniqueness of solution for the fuzzy differential equation.
- [6] L.M.Hocking, Optimal Control an introduction to the theory with applications, Oxford applied Mathematics and Computing Science series Clarendon Press, (1991).
- [7] M.Mizumoto and K.Tanaka, *Some properties of fuzzy numbers*, North-Holland Publishing Company, (1979).
- [8] Osmo Kaleva, Fuzzy differential equations, Fuzzy set and System. 24, 301-317, (1987).
- [9] P.Diamand and P.Kloeden, Metric space of Fuzzy sets, World scientific., (1994).
- [10] P.Diamond and P.E.Kloeden, *Optimization under uncertaintly*, Proceedings 3rd.IPMU Congress, B.Bouchon-Meunier and R.R.Yager, Paris, 247-249, (1990)
- [11] P.V.Subrahmanyam, S.K.Sudarsanam, A note fuzzy Volterra integral equations, Fuzzy Sets and Systems. 81, 237-240, (1996).
- [12] S.Seikkala, On The Fuzzy Initial Value problem, Fuzzy Sets and Systems. 24, 319-330, (1987).
- [13] Y.C.Kwun and D.G.Park, *Optimal control problem for fuzzy differential equations*, Proceedings of the Korea-Vietnam Joint Seminar, 103-114, (1998).
- [14] Y.C.Kwun, J.Y.Park and J.W.Ryu, Approximate Controllability and Controllability for delay Volterra System, Bulletin of the Korean Mathematical Society., 28, No.2 (1991).