퍼지관계방정식의 해의 관계성

On the solutions U^{\dagger} and U_{\dagger} of fuzzy relation equation

JONG DUEK JEON HYUN-MEE KIM

Department of Mathematics, Kyung Hee University Seoul, Korea, 130-701

Abstract

The purpose of this paper is to investigate solutions U_{\uparrow} and U^{\dagger} for the fuzzy relation equation $R \circ U = T$ in cases of R < T, $R \le T$, and R = T, when R is irreflexive, $U_{\uparrow}(x_i, x_k) = \bigwedge [R(x_i, x_i) \multimap T(x_j, x_k)]$, $U^{\dagger}(x_i, x_k) = \bigwedge [R(x_j, x_i) \multimap T(x_j, x_k)]$.

1. Introduction

Let us consider the lattice $L = ([0,1], \bigvee, \bigwedge, \rightarrow, \ll)$, where

$$a \lor b = \max (a, b),$$

 $a \land b = \min (a, b),$
 $a \rightarrow b = 1$ if $a \le b,$
 b if $a > b.$
 $a \ll b = 1$ if $a \ge b,$
 a if $a < b.$

2. Preliminaries

The existence of solution of the relation equation

$$R \cdot U = T$$

(with unknown relation U and given relations R, T) was characterized by Sanchez [1].

We need the following definitions and properties.

Let X be non-empty a finite set, card(X) = n.

Definition 2.1

A fuzzy binary relation on X and Y is a fuzzy subset R on $X\times Y$. We are only interested in the case in which X=Y .

Definition 2.2

Suppose R and U are two fuzzy relation on X.

$$(R \cdot U)(x_i, x_k) = \bigvee [R(x_i, x_i) \land T(x_i, x_k)], \forall x_i, x_i, x_k \in X,$$

where · operation is called a sup-inf composition.

Definition 2.3

We say that I is called an *identity relation* on X if $R \circ I = I \circ R = R$, where I(x,y) = 1 if x = y,

0 if $x \neq y$.

Definition 2.4

- 1) A fuzzy relation R is said to reflexive if $I \le R$.
- 2) A fuzzy relation R is *irreflexive* iff $I \wedge R = \emptyset$.
- 3) If $R \circ R \leq R$, then R is called transitive.

Theorem 2.5 [2]

Equation $R \circ U = T$ has solutions iff $R \circ U^{\dagger} = T$, where

$$U^{\dagger}(x,z) = \bigwedge [R(y,x) \to T(y,z)] \qquad \forall x,y,z \in X.$$

If $R \circ U = T$ has solutions, then the above formula gives the greatest one. In general, we always have $R \circ U^{\dagger} \leq T$.

3. Result

Theorem 3.1

Let R be irreflexive.

- 1] If R < T, then $U_{\uparrow} = \emptyset$.
- 2] If R = T and $R(x_i, x_i) \neq 0$, where $i \neq j$, then $U_{\uparrow} \leq I = U^{\dagger}$.

Proof.

1] Let
$$R(x_i, x_j) = [r_{ij}]$$
, $T(x_j, x_k) = [t_{jk}]$, $\forall r_{ij}, t_{jk} \in [0, 1]$.
Since $R < T$ and R is irreflexive,

$$U_{+}(x_{i}, x_{k}) = \bigwedge_{j} [R(x_{i}, x_{j}) \ll T(x_{j}, x_{k})]$$

$$= \bigwedge [r_{i1} \ll t_{1k}, r_{i2} \ll t_{2k}, \cdots, r_{ii} \ll r_{ik}, \cdots, r_{in} \ll t_{nk}]$$

$$= 0 \qquad \text{for all } i, j, k \leq n.$$

2] Let
$$U_{+}(x_{i}, x_{k}) = \bigwedge [R(x_{i}, x_{j}) \ll R(x_{j}, x_{k})]$$
 -----(1.1),

$$U^{\dagger}(x_{i}, x_{k}) = \bigwedge [R(x_{j}, x_{i}) \rightarrow R(x_{j}, x_{k})] \quad -----(1.2).$$

For any $i, j, k \le n$, the right -hand member of (1.1) is

$$\bigwedge [r_{i1} \ll r_{1k}, r_{2} \ll r_{2k}, \cdots, r_{in} \ll r_{nk}].$$

I) Let
$$i = k$$
, we find $U_{+}(x_{i}, x_{k}) = r_{ih}$ if $r_{ih} < r_{hi}$, $\forall h \le n. --(1.3)$

In case of
$$i \neq k$$
, $U_{\uparrow} \equiv R \ll R$

$$= \bigwedge_{j} [r_{ij} \ll r_{jk}]$$

$$= \bigwedge [r_{il} \ll r_{lk}, r_{lk}, r_{lk}, r_{lk}, r_{lk}, r_{lk}] \qquad ----(1.4)$$

The right-hand member of (1.4) contains $r_{ii} \ll r_{ik}$. Since R = T, $r_{ik} \neq 0$, $\forall i \neq k$, $U_{\uparrow} = 0$. Thus $U_{\uparrow} = \{0, r_{ik}, 1\}$.

ii) For any $i, j, k \le n$, the right-hand member of (1.2) is

$$\bigwedge_{j} [r_{ji} \rightarrow r_{jk}] = \bigwedge [r_{1i} \rightarrow r_{1k}, r_{2i} \rightarrow r_{2k}, \cdots, r_{ni} \rightarrow r_{nk}]$$

We find
$$U^{\dagger}(x_i, x_k) = \bigwedge_{j} [1]$$
 if $i = k$, $\bigwedge_{j} [0]$ if $i \neq k$.

By (1.3) and (1.5), $U^{\dagger} = I \ge U_{\dagger}$.

Remark 3.2

4. Examples

Example 4.1

In case of R < T,

$$R = \begin{pmatrix} 0 & 0.1 & 0.5 \\ 0.3 & 0 & 0.7 \\ 0.8 & 0.4 & 0 \end{pmatrix} \qquad T = \begin{pmatrix} 0.1 & 0.2 & 0.6 \\ 0.4 & 0.5 & 0.8 \\ 0.9 & 1 & 0.9 \end{pmatrix}$$

$$U_{\uparrow} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \emptyset.$$

Example 4.2

In case of R = T,

$$R = \begin{pmatrix} 0 & 0.1 & 0.5 \\ 0.3 & 0 & 0.7 \\ 0.8 & 0.4 & 0 \end{pmatrix} \qquad T = \begin{pmatrix} 0 & 0.1 & 0.5 \\ 0.3 & 0 & 0.7 \\ 0.8 & 0.4 & 0 \end{pmatrix}$$

$$U_{\uparrow} = \begin{pmatrix} 0.1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0.4 \end{pmatrix}$$
 , $U^{\dagger} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and $U_{\uparrow} \leq U^{\dagger} = I$.

References

- 1.E.Sanchez, Resolution of composite fuzzy relation equations, Inform. and Control 30(1976) 38-48
- 2. J.Drewniak, Equation in classes of fuzzy relations, Fuzzy Sets and Systems 75 (1995) 215-228