$TL-P^*$ 군의 몇가지 성질

Some properties of $TL-P^*$ subgroups

김재겸(Jae-Gyeom Kim)

DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, PUSAN 608-736, KOREA. E-mail address: jgkim@star.kyungsung.ac.kr

김한두(Han-Doo Kim)

DEPARTMENT OF MATHEMATICS, INJE UNIVERSITY, KIMHAE, KYOUNGNAM 621-749, KOREA. E-mail address:mathkhd@ijnc.inje.ac.kr

ABSTRACT

We introduce the notion of $TL - p^*$ -subgroups which is an extension of the notion of TL - p-subgroups and investigate basic properties of $TL - p^*$ -subgroups. And we consider decompositions of TL-subgroups.

1. Introduction

Rosenfeld [8] introduced the concept of fuzzy subgroups of a group. Following these ideas, many authors are engaged in generalizing various notions of group theory in the fuzzy setting. In particular, the notion of fuzzy orders of the elements of a group relative to a fuzzy group and the notion of fuzzy orders of fuzzy subgroups have been introduced[4] and developed[3, 4, 6] and conditions for a fuzzy subgroup to be written as the intersection of its minimal fuzzy p-subgroups have been investigated[3, 4, 6]. Recently the concept of TL-subgroups that is an extension of the concept of fuzzy subgroups has been introduced and studied [10] and the notion of TL-orders of the elements of a group relative to a TL-subgroup and the notion of TL-orders of TL-subgroups that are extension of the notion of fuzzy orders of the elements and the notion of fuzzy orders of fuzzy subgroups, respectively, were introduced [7] and developed [1, 2, 5]. In this paper, we introduce the notion of TL- p^* -subgroups which is an extension of the notion of TL-p-subgroups. And we consider decompositions of TL-subgroups.

Throughout this paper, we let L denote a complete lattice that contains at least two distinct elements. The meet, join, and partial ordering will be written as \land , \lor , and \leq , respectively. We also write 1 for the greatest element of L.

2. Preliminaries

We recall basic definitions and some properties that are relevant for this paper. We will write the identity element of a group G by e and the order of x in G by O(x). And we let T denote a t-norm on L.

Definition 2.1[7]. Let μ be a TL-subgroup of a group G. For a given $x \in G$, the least positive integer n such that $\mu(x^n) = 1$ is said to be the (TL-)order of x with respect to μ (briefly, $O_{\mu}(x)$). If no such n exists, x is said to have infinite TL-order with respect to μ .

Definition 2.2. Let μ be a TL-subgroup of a group G. For a prime p, μ is called a TL-p-subgroup of G if $O_{\mu}(x)$ is a power of p for every $x \in G$.

Let μ be a TL-subgroup of a group G. If there exists a minimal TL-p-subgroup of G containing μ , then it is unique because the intersection of TL-p-subgroups of G is obviously a TL-p-subgroup. We will call it by the least TL-p-subgroup of G containing μ and denote it by $\mu_{(p)}$. Note that for every prime p, $\mu_{(p)}$ does not exist in general even if $T = \Lambda$ and L = [0,1] [4].

Theorem 2.3[5]. Let μ be a TL-subgroup of a group G. For $x \in G$, if $O_{\mu}(x) = mn$ with (m, n) = 1, then there exist x_1 and x_2 in G such that $x = x_1x_2 = x_2x_1$, $O_{\mu}(x_1) = m$, and $O_{\mu}(x_2) = n$. Furthermore such an expression for x is unique in the sense of TL-grades, i.e., if (x_1, x_2) and (y_1, y_2) are such pairs, then $\mu(x_1) = \mu(y_1)$ and $\mu(x_2) = \mu(y_2)$.

Let μ be a TL-subgroup of a group G with $T=\bigwedge$ such that $O_{\mu}(x)$ is finite for all $x\in G$. For every prime p, define an L-subset μ_p of G by $\mu_p(x)=\mu(x_2)$ where $x=x_1x_2$ is an expression for x with $O_{\mu}(x)=mp^t$, (p,m)=1, $O_{\mu}(x_1)=m$ and $O_{\mu}(x_2)=p^t$. Then μ_p is well-defined by Theorem 2.3.

Proposition 2.4 [5]. Let μ be a TL-subgroup of an Abelian group G with $T = \bigwedge$ such that $O_{\mu}(x)$ is finite for all $x \in G$. For every prime p, μ_{p} is the least TL - p -subgroup of G containing μ i.e., $\mu_{p} = \mu_{(p)}$.

3. $TL - p^*$ -subgroups

In this section, we introduce the notion of $TL - p^*$ -subgroups and investigate basic properties of $TL - p^*$ -subgroups.

Definition 3.1. Let μ be a TL-subgroup of a group G with $T = \bigwedge$ and p a prime. μ is said to be a TL- p^* -subgroup if, for every $x \in G$, $\min\{n \in \mathbb{N} \mid \mu(x) < \mu(x^n)\}$ is a power of p, whenever this minimum exists.

Let p be a prime. And let μ be a TL-subgroup of a group G satisfying the following condition: If $\mu(x)$ and $\mu(y)$ are comparable where $x, y \in G$, then $\mu(xy) = \mu(x) \wedge \mu(y)$. A TL-subgroup μ of a group G satisfying this condition is said to have the property (E). If μ has the property (E) and $T = \wedge$, then there exists the least $TL - p^*$ -subgroup of G containing μ and we will denote it by $\mu_{(p)}$.

Note that if μ is a TL-subgroup of a group G with $T = \bigwedge$, then $\mu(x^n) \ge \mu(x)$ for all $x \in G$ and for all integers n.

Theorem 3.2. Every TL - p-subgroup of a group G with $T = \bigwedge$ is a $TL - p^*$ -subgroup of G.

Thus the notion of $TL - p^*$ -subgroups is an extension of the notion of TL - p-subgroups. Note that the homomorphic images and the homomorphic preimages of TL-subgroups are TL-subgroups[10].

Theorem 3.3. Let f be a group homomorphism from G onto H. And let μ and ν be TL-subgroups of G and H with $T = \bigwedge$, respectively. Then:

- (1) If μ is a TL- p^* -subgroup of G, then $f(\mu)$ is a TL- p^* -subgroup of H, provided μ is f-invariant, i.e., if $f(x_1) = f(x_2)$ implies $\mu(x_1) = \mu(x_2)$.
- (2) If ν is a $TL p^*$ -subgroup of H, then $f^{-1}(\nu)$ is a $TL p^*$ -subgroup of G.

4. Decompositions of TL-subgroups

The notion of $\mu_{\mathfrak{p}}$ in section 2 can be applied only to TL-subgroups of groups whose every element has a finite TL-order. To overcome such limit, we now introduce the notion of $\mu_{\mathfrak{p}}$. While $\mu_{\mathfrak{p}}$ corresponds to $\mu_{(\mathfrak{p})}$, $\mu_{\mathfrak{p}}$ corresponds to $\mu_{(\mathfrak{p})}$. And the notion of $\mu_{\mathfrak{p}}$ is a generalization of the notion of $\mu_{\mathfrak{p}}$.

Definition 4.1. Let μ be a TL-subgroup of a group G. For a given prime p, define an L-subset μ_p of G by $\mu_p(x) = \sup\{\mu(x^n) \mid n \in \mathbb{N}, (n, p) = 1\}$.

By Definition 4.1, it is clear that $\mu_{\mathfrak{p}} \supseteq \mu$. However $\mu_{\mathfrak{p}} \neq \mu$ and $\mu_{\mathfrak{p}}$ is not a TL -subgroup in general.

Proposition 4.2. Let μ be a TL-subgroup of a group G with $T = \Lambda$. For every $x \in G$, $\min\{n \in \mathbb{N} \mid \mu_{p^*}(x) \langle \mu_{p^*}(x^n) \}$ is a power of p, whenever this minimum exists.

Theorem 4.3[7]. Let μ be a TL-subgroup of a group G. Let $O_u(x) = n$ where $x \in G$. Then $O_u(x^m) = n/(m,n)$ for all integers m.

Theorem 4.4. Let μ be a TL-subgroup of a group G with $T = \wedge$ such that $O_{\mu}(x)$ is finite for all $x \in G$. Then $\mu_{p} = \mu_{p}$ for every prime p.

Thus the notion of $\mu_{\mathfrak{p}}$ is a generalization of the notion of $\mu_{\mathfrak{p}}$. Now we give a condition for a TL-subgroup μ to be written as the intersection of all $\mu_{\mathfrak{p}}$. We will denote $\bigcap \{ \mu_{\mathfrak{p}} \mid \mathfrak{p} \text{ is a prime } \}$ by $\bigcap \mu_{\mathfrak{p}}$ for the sake of convenience.

Proposition 4.5. Let μ be a TL-subgroup of a group G. If there exists a prime q such that $\mu(x^n) = \mu(x)$ for all $x \in G$ where (n, q) = 1, then $\mu = \bigcap \mu_b$.

Proposition 4.6. Let μ be a TL-subgroup of a group G with $T = \Lambda$. For all $x \in G$, let $\mu(x^l)$ and $\mu(x^{m_x q})$ be comparable where $l = m_x q + r$ with $0 \le r < m_x$ and where $m_x = \min\{n \in \mathbb{N} \mid \mu(x) < \mu(x^n)\}$. Then $\mu = \bigcap \mu_{b^*}$.

Theorem 4.7. Let μ be a TL-subgroup of a group G with $T= \wedge$. And let μ have the property (E). Then μ_{p^*} is a TL-subgroup of G with $T= \wedge$ if and only if $\mu_{p^*} = \mu_{(p)^*}$.

Proposition 4.8. Let μ be a TL-subgroup of a group G with $T = \Lambda$. And let μ have the property (E). For all $x \in G$, let $\mu(x^l)$ and $\mu(x^{m,q})$ are comparable where $l = m_x q + r$ with $0 \le r < m_x$ and where $m_x = \min\{n \in \mathbb{N} \mid \mu(x) < \mu(x^n)\}$. If μ_p is a TL-subgroup of G with $T = \Lambda$ for every prime p, then $\mu = \bigcap \mu_{(p)}$.

References

- [1] H.-D. Kim, D.-S. Kim and J.-G. Kim, Some characterizations of TL-subgroups, submitted.
- [2] H.-D. Kim, Y.-H. Kim and J.-G. Kim, TL-subgroups having the property (*), Fuzzy Sets and Systems (to appear)
- [3] J.-G. Kim, Fuzzy subgroups and minimal fuzzy p-subgroups, J. Fuzzy Math. 2 (1994), 913-921.
- [4] J.-G. Kim, Orders of fuzzy subgroups and fuzzy *p*-subgroups, Fuzzy Sets and Systems 61 (1994), 225-230.
- [5] J.-G. Kim, Some properties of TL-groups, Korean J. Comput. & Appl. Math. Vol. 5 (1998), 285-292.
- [6] J.-G. Kim and H.-D. Kim, A characterization of fuzzy subgroups of some Abelian groups, Inform. Sci. 80 (1994), 243-252.
- [7] J.-G. Kim and H.-D. Kim, Orders relative to TL-subgroups, Math. Japon. 46(1997), 163-168.
- [8] A.Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [9] B.Schweizer and A.Sklar, Statistical metric spaces, Pacific J.Math. 10 (1950), 313-334.
- [10] Y.Yu,J.N.Mordeson and S.-C.Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Math. and Computer Science, Creighton Univ., Omaha, 1994.