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Abstract

Proposed here is a parallel genetic algorithm accompanied with intermittent migration among subpopulations. It is
intended to maintain diversity in the population for a long period. This method was applied to finding out the global
maximum of some multimodal functions for which no other methods seem to be useful. Preferable results and their

detailed analysis are also presented.
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1. Indtroduction

Genetic Algorithms are considered extremely powerful
in the field of various optimization problems: However,
the most serious defect is their non-deteministic features.
That is, most parameters concernig genetic operations
must be determined through trial and error. Such
parameters include the number of individuals, crossing-
over rate, mutation rate, selection methods for next
generation individuals, and so on. More over, in most
cases, a lot of trials using different sequences of random
numbers don't necessarrily show stable results. Some
sequences of random numbers introduce to growth of
uniformity in the population. This might rusult in
premature convergence.

One of the promising method to overcome this problem
might be parallelization of a genetic algorithm. It is fairly
expected to maintain diversity in the population naturally
for a long period. Actually, in such a method, each
processor of a parallel computer system will have different
subpopulation and perform genetic operations concurrently
on it. The point here is to migrate some individuals from
one subpopulation to another at an appropriate rate. This
is a kind of imitation of the actual evolutionary process in
the real world. That is, we take advantage of the process
reaching the higher culture by appropriate cultural
exchange. This kind of parallel genetic algorithms have
been studied by several researchers including Tanese,
Mubhlenbein, etc. [1]-[6].

In this paper, we proposed to adopt suitable mechanism
for deciding igration rate and its interval in the genetic
algorithm. We also intend to apply such an algorithm to

ever difficult function optimizations that were not yet
solved by previous researchers. Two benchmark functions
with 2-variables and 6-variables were selected. Both
functions have extremely sharp summit and steep slope,
so that no numerical methods nor canonical genetic
algorithms might be useful.

The parallel computer used for realizing such algorithms
was the HITACHI SR2201. The proposed parallel
algorithm using eight processors on this machine is
investigated concemning diversification in subpopulations
and the preciseness of the numerical results obtained.

2. Implementation of a parallel
genetic algorithm

2.1 General considerations

Genetic algorithms can be seen as a kind of parallel
random secarch in their nature. By some mechanism,
individuals mate each other and produce offspring. This
mating or crossing-over occurs concurrently in the
population. But the selection operations for next
generation might be performed with a centralized control,
because global computations of the average and the
maximum of fitness will be required. So that, it is
difficult to perform genetic algorithms directly on a
parallel computer efficiently [2]{7].

In the parallel genetic algorithms, genetic operations
accompanied with these selection operations must be
parallelized. In order to do this, the whole population
should be divided into subpopulations and then they are

—629—



allocated to each processor. Then evolution within the
subpopulation are performed independently with each
other. Such a distributed evolution keeps the diversity of
the whole population high. But if this process continues
for a long time, probability of falling into premature
convergence becomes also high. It is not impossible to
take advantage of such a parallelism. If the desired level
solution is found in one of the subpopulations, whole
computation would be stopped. In this way, one would
get an appropriate solution. But this is merely equivalent
to running a serial genetic algorithm repeatedly.

2.2 PGA with intermittent migration(PGA-IM)

In order to construct more natural and genuine parallel
algorithm, we need some migration mechanism. That is,
information exchange should be taken among
subpopulations in an appropriate interval. In the concrete,
some individuals move into another subpopulation and
they make mating there. The selected individuals for
migration should be of high ranking in their native
subpopulation. They evolved in a different way from the
new subpopulation. So that, offspring produced by them
and the natives in that subpopulation would get different
promising feature. This will result in new promising
search area. Such landscape would never be obtained by
mutation operations.

In order to take advantage of migration, proper control
of the rate and the interval of it is required. Basically in
our proposed algorithm, predetermined migration interval
(Mintvl) is used. In addition to this, migration occurs

when the standard deviation of fitness becomes smaller
than a threshold value (Fgh). The number of individuals

migrating to their neighbor subpopulation is determined
by the rate Mypgte. After migration, canonical serial
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genetic algorithm is taken place until next time
migration.

The serial genetic algorithm used here is a popular one.
It is composed of (1)initialization of individuals in the
population, (2)crossing-over, (3)mutation, (4)fitness
evaluation, and (§)selection for next generation. These
steps are repeated until reaching specified generation
count. The crossing-over is done at a single locus. The
function value is directly used as fitness. The selection
strategy is based both on elite preserving and ranking
selection. Suppose. that the current number of individuals
is n, and the number of new offspring produced by
crossing-over is m. The m+n individuals are sorted
according to their fitness value. In the next generation, n
individuals will survive at the maximum. The survival
probability of the s-th ranking individual (s=0 for the top)
is given as (m+n-s)/(m+n). Therefore, the lowest ranking
individual will still survive at the probability of 1/(m+n).

2.3 Outline of the parallel computer

The machine used here was the HITACHI distributed
memory parallel computer SR2201. As shown in Fig.1,
it is composed of 16 RISC processors, whereas 2
processors out of them are reserved for 1/0. In the
following experiment, remaining 8 processors are used.
The peak performance of each processor is 300 Mfolps and
the peak data transmission rate among processors is 300
Mbytes/sec. Each subpopulation is allocated to each
processor. Migration is performed using this data
transmission feature. We see that these processors are
connected via one-way torus. Individuals may move from
i-th processor to (i-1)-th processor. Exceptionally,
individuals in the O-th processor may move to 8-th

Processor.
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Fig. 1 The Parallel Computer (HITACHI SR2201)
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3. Multimodal function optimization
problems

Two kinds of multimodal function optimization
problems are considered here.

3.1 The DelJong's function F5

The first is the 2-variables function called DeJong's F5
and is used widely as a benchmark problem. It is
formulated as follows:

fx,y) =

25 1 -l
- 0.002 +
Z‘lﬁ(x ~a;)%(y—b;)°

In this formula, aj and bj determine the locations of the

summits. The domain of x-axis and y-axis are both defined
as [-65.535, 65.536] and there exist 25 summits. All the
summits have different height. The highest summit is
located at [-50.0, -50.0]. It is generally difficult to find out
this highest peak because canonical genetic algorithms
tend to converge 1o other lower peaks and there are no way
to escape from them through the valley.

The representation of genotype for solution (x, y) is
determined by using 34 bits. Because of the domain of x
and the required numerical precision of 0.001 for x-axis
stepping, a sequence of zeros of 17 bits corresponds to the
value -65.535. Also one bit corresponds to a delta x. For
the y-axis, the same representation is used. So, the
combined 34 bits represents a solution (x, y).

0O : PGA-IM (our method)
0 : PGA without migration
A serial GA
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* Success means correct solution
up to 4 decimal places.

Fig.2 A Hundred Trials for the DeJong's Function F5

Some results for this problem from our parallel algorithm
PGA-IM (the Parallel Genetic Algorithm with
Intermittent Migration ) are shown in Fig.2 comparing
with others. This figure illustrates the number of
successes in a hundred runs up to the 500 generation. The
success means reaching exact solution up to 4 decimal
places. Our PGA-IM shows preferable success rate of 93%
at 500-th generation. Here we set 400 individuals and
equally divided them onto 8 processors. In all of the runs,
the crossing-over rate is set to 0.5 and the mutation rate is
set to 0.05.

3.2 The Tsuda's exponential function

The second one is called the Tsuda's 6-variables function
and is defined as follows:

f(Xl, Xz, e e ey Xﬁ) =

3
[ Texpl-3{xgi1% + (xpi -1)*}]

i=1

+exp[—{(xgi_1 = 1) + x5;2}1)

The domain of all the variable is set to [-0.5, 1.5]. This
function is a combination of 6 exponential functions and
is considered quit difficult to find out the global maximum
due to its steep slopes. Tsuda [9] proposed interactive
method using graphical interface, and obtained some good
solution.

The length of the chromosome used with the PGA-IM
is 150 bits (25 bits x 6 variables). This is due to the
domain size described above and the required numerical
precision of 7 digits. For each subpopulations 500
individuals are initially assigned. In the Tabell, complete
numerical solutions for this problem from our PGA-IM
are shown comparing with other methods. The PGA-IM
gives a correct global maximum coinciding with the exact
value up to 5 decimal places. The values of each variables
corresponding to that function value are also correct up to
4 to § decimal places. In this case the crossing-over rate
was set to 0.8. On the other hand, the mutation rate is
varied among subpopulations, but their values were
suppressed in very small values between 0.01 to 0.05.

The preferable results shown above are not accidental
one. In Fig.3, results from another 30 runs with varied
random number sequences are also presented. In the figure,
(a)serial parallel algorithm, (b)paralle]l genetic algorithm
without migration, and our (¢)PGA-IM are compared.
Solid small circles denote the generation number where
the correct function value up to 3 decimal places are
obtained. Similarly, the white circle and the triangle
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Fig. 3 Results from the Tsuda's
Six-variables Function
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Table 1 Solutions for the six-variables Tsuda's function optimization obtained by various methods

f(x) X, X, X, X, X X
exact value [9] 1.51947 |0.053495 | 0.946505 |0.053495 |0.946505 |0.053495 |0.946505
PGA-IM (our method) 151947 10.053501 |0.946502 |0.053495 |0.946501 |0.053497 |0.946503
GA by Fukushima [8] 151838 [0.05467 ]0.93749 |0.06248 095312 |0.05467 |0.93749
interactive method [9] 151946 [0.05471 [0.94699 ]0.05227 094645 |[0.05341 |0.94672

denote the correctness up to 4 decimal places and 5
decimal places respectively. One can observe that our
PGA-IM always shows high precision numerical
solutions without interference from varied random namber
sequences.

4. The effects of migration on diversification

The good results from our PGA-IM shown above come
from the intermittent migration. In the above 30 runs,
top 5% individuals migrated to the neighboring
subpopulation every 10 generation in the average. The
actual effect of this is shown in Fig.4. The small solid
circle and the small plus symbol denote the PGA-IM and
the serial genetic algorithm, respectively. Figure (a)
shows the fitness, i.e. the function value up to 100
generations. Figure (b) is a magnification of the figure (a).
With the PGA-IM, the exact solution (1.51947) was
obtained at 94-th generation. On the other hand, figure (¢)
shows standard deviation of the fitness in the
subpopulation. Along with the progress of generation, the
standard deviation becomes small and all the individuals
tend to converge to some optimal. Whereas, it is observed
that the standard deviation shows fluctuation caused by
migration. This continuous fluctuation finally reveal its
implicit effects at near 80-th generation. That is, new
promising search area was explored. Actually, in the
succeeding several generations, the numerical precision of
the solution was improved by the factor of 2 decimal
digits.

8. Conlusion

A kind of parallel genetic algorithm with intermittent
migration was proposed and applied to function
optimization problems. It was successful in getting very
precise solution quite effectively. The migration interval
was controlled based on the standard deviation of fitness.
This method proved clearly effective. Another point is that
this method showed favorable robustmess against changing

sequences of random numbers used in the algorithm. We
plan to apply this method to more attractive and practical
problems in the near future.
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