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New Fuzzy Concepts as a consequence of the encoding with intervals
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Abstract

In this paper, we propose a new technique of codification. The purpose of this method is to take in
consideration the natural language nuances and the fuzziness that characterizes the human reasoning. So, we
warranted a means of more flexible encoding that translates as well the linguistic descriptions. Its principle is
simple and intuitive. It consists simplyv in replacing in ambiguous cases, a unique number by an interval. The
introduction of the new codification necessitates the elaboration of metric or similarity in order to compare
two intervals. This comparison must take in consideration the difference of their size, the remoteness of their

center and the width of their intersection. In consequence, we defined three new fuzzy concepts:

"fuzzy

inclusion degree”, "fuzzy resemblance degree”, and "fuzzy curve”
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1. Imtroduction

For different agricultural species, several varieties
of seeds and plants are certified in Morocco. Each of
these varietics is described by a grcat number of
morphological and vegetable characters, etc. These
characters constitute the basic data that compare the
varieties' tests with the different varieties of the same
species already exist in the official catalog [1]. The
numerical codification of thesc characters is realized
in two stages:

1. First, the character is described with a linguistic
expression such as: "weak", "very weak", "medium”,
etc.

2. Then, each of thesc cxpressions. is. quantified by
associating, according to UPOV's norms [ 1], a number
of decimal system: 0, 1, 2,3,4.5,6,7,8,9.

However, the attribution of these expressions,
based essentially on fuzzy terms, could vary from one
operator to another. Indeed, what might seem "weak™
for example for one person could appear "very dim" to
another and inversely. So, scveral different encode
could be obtained for the samc varicty. In addition,
some character necessitates a description where
intervenes several linguistic expressions. So, They
could not be expressed only by unique encodes of
decimal system. The following table illustrate such
descriptions.

CHARACTER DESCRIPTION
coloration middle, red lightly roseate
shape rounded. lightly flattened

In this paper, we propose a new technique of
codification that permits 1o overcome these
inconveniences. The purpose of this method is to take

in consideration the natural language nuances and the
fuzziness  that characterizes ' the- human- reasoning,
without disrespecting the UPOV’s norm. So, we
warranted a means of more flexible- encoding that
translates as well the linguistic descriptions.

2. Coding with intervals

The objective of this method is of describing the
characters objectively and naturally, in taking into
account the fuzziness that characterizes the words of
human language. Its principle is simple and intuitive.
It consists simply in replacing in ambiguous cases, a
unique number by an interval The following table is
given as an example.

CHARACTER DESCRIPTION CODE
caliber middle, small 13,5]
shape lightly flattened, [1.3]

flattened

For no ambiguous descriptions, which consists
sumply in the presence or the absence of a character,
the two Boundaries of interval coincident. This case
brings us back to the classic case of encoding by
numbers. So. the classic method is generalized.

In conscquence. the introduction of the new
codification nccessitates the elaboration of metric or
similarity in order to compare two intcrvals. This
comparison must take in consideration the difference
of their size. the remoteness of their center and the
width of their intersection. In consequence, we
defined three new fuzzy concepts in order to improve
the performances of data analysis’s methods: "fuzzy
inclusion degree". "fuzzy resemblance degree". and
"fuzzy curve".
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2.1. Concept of fuzzy inclusion degree

ZADEH {2], has introduced the theory of fuzzy sets
in 1965. He defined the fuzzy membership degree
where an element belongs to a set neither by ves nor
by no. but with a degree who is often submitied to a
subjcctive attitude.

In this part, we propose a fuzzy inclusion degree
like the fuzzy membership degree where the inclusion
of an interval in another interval is neither bv yes nor
no. but with a degree submitted to some parameters.
In addition, the best functions of fuzzy membership
depend of the distance D(x, x,) [3] of an arbitrary
element x to the reference element x;,. So. we must
formulate necessary an adequate distance between the
intervals who takes into account all their features.
Then. we use the diversity of the fuzzy functions
formulated in the applications of the theory of fuzzy
scts.

Problem’s position: Let IL=[ab] the interval
describing a given character C of reference variety Vg,
and L=[x.y]. the one representing the same character
C for a second varicty V.

Let L= (b- a), the width of I;. and L.= (v- x), the
one of L., O, the center of I}, and O, the one of 1.
The similarity between VR and V, relatively to the
character C, requires a measure of thc inclusion
degree of I, in ;. We have two cases:
Case 1: L= L, (the intervals have the same size):
In this case, the Euclidean distance of two centers was
sufficient. Indeed, the distance of I, to L, is
accordingly smaller than O, brings together of O,. So.
the size of the intersection between the two intervals
increases. Its minimal value, equal to 0 obtained when
the centers O; and O, of two intervals coincident,
therefore, where the size of the intersection 1is
maximal.
Case 2: L;zL; (the intervals have different sizes):
In this case, the Euclidean distance of the two centers
was not sufficient anymore. Indeed, all the intervals
centered in O, will have the same distance to 1, and
therefore, the same degree of inclusion. It is incorrect
because the intervals are different.

Solution’s description: We proposc the following
fuzzy inclusion degree:

D

1
I S = :
mclusnon( 1 2 ) l'f‘Dim(Il,I.Z )k

(2.1.1)
or

Dil'lClusion aly IZ ):e .k Dlm (Il .[2)
(2.1.2)

With: D, (I;. I) is the distance that measurcs the
dissimilarity between the intervals. It is a combination
of the following threc functions:

D, I, (L.L,)(f, (L,.L,)+d(0,0,))

@.1.3)
d (0,,0,)0,-0,)’ (2.1.4)
2
& (L -L
f,@L,,L,)=1-e Gty (2.1.5)
f, (L, ,L,)=1+log(1+(L,-L,)") (2.1.6)

We have:

(2.1.4) : measure the remoteness of the centers,
(2.1.5) : measure the degree of the width of the
intersection,

(2.1.6) : measure the width of the difference of the
sizes.

Remark: 1. These three functions are positive,
symmetrical and verify the following condition:

£, (xty) <E, ()t (y) 317
This last condition would warrant the triangular
inequality. So, we can consider one distance.
2. If L1= L2, This casc brings us back to the
Euclidean distance between two centers. So Dy,
generalizes the classic distance.

Case of slotted intervals: In the examples illustrated
in the figure (2.1) we present some slotted intervals
with different sizes in order to illustrate the result of
fuzzy inclusion degree. We use the equation (2.1.2)
fork=0.2.

* Case 1: Let {10, 12] the reference interval centered
on 11, and[ x-1, x+1] the arbitrary intervals, when x
varies in the middle of 1 and 19. We have the
following resuits:

- If x=11, the maximal value of the curve of fuzzy
inclusion degree is 1, when the two intervals with the
same size coincident.

- If x#11, the more x gets far from 11, the more the
value of the curve (1) decreases.

* Case 2: Let [10-1, 12+1} the reference interval with
the same center than the first case, and the same
arbitrary intervals. We have the following results:

- If x= 11, the maximal value of the curve (2) of
fuzzy inclusion degree is severely inferior to the
maximal value of the curve (1) when the two centers
coincident. Because. the width of the intersection of
the second case is smaller than the first case.

- If x# 11, the more x gets far from 11, the more the
value of the curve (2) decreases.

* Case i We consider | 10- (i-1), 12+ (i-1) ] as a
reference interval with the same center than the first
cases, and the same arbitrary intervals. We have the
following results:

- For x= 11, the maximal value of the curve (i) of
fuzzy inclusion degree is severely inferior to the
maximal value of the curve (i-1) when the two centers

—574—



coincident, because the width of the intersection in
this casc is smaller than those in the (i-1) firsts cases.
- For x#11, the morc x gets far from 11, the more the
value of the curve (1) decreases.
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Figure 2.1. The curves of fuzzy inclusion degree

So, fuzzy inclusion degree of I in I, gets as greater
as [, becomes closer to I,. Its maximal value (<1) is
reached when the centers Ol and O2 of the two
intervals coincide. It is equal to 1 when the two
intervals arc exactly identical, and more the difference
of the sizes is important, more this value is decreases.

The influence of k: In this part, we illustratc the
influence of k on the aspect of curve of fuzzy
inclusion degree for both the equations (2.1.1) and
(2.1.2).

We have the reference interval [a, b} [ 0, 2] centered
at the beginning at 1. Then, this center baffled for
each curve by incrcasing the value of b.

The studv of the influence of k allows us to define
the level of bringing together of the curves (1). (2). ...
, in order to choosc the case that arranges us.

Indced. if we consider the curves(a) and (¢) of the
figures (2.2) and (2.3). we will note that the curves of
the equation (2.1.2) tend to bring together when k is
very small. This is logical since the exponential
function increases and decreases quickly.
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Figure 2.2. The influence of k for the equation (2.1.2)
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Figure 2.3. The influence of k for the equation (2.1.1)

For the two other cases (b) and (d) for the equation
(2.1.1) of this figure we have the same case. The alone
diffcrence -resides in the fact that the decreasing of the
curves of the equation (2.1.2) is more homogeneous
than the one of the equation (2.1.1). Indeed. the
cunves (1) and (2) of the equation (2.1 1) is nearly at
thc Same level for the two values of k, while that of
thc equation (2.1.2) has a decreasing nearly
proportionally to k.

Remark: The number of curves no null decreases for
the intervals of different size, if k becomes infinite. So
for the equation (2.1.2) it is necessary to take k
between 0 and 1, and for the equation (2.1.1) k must
vary between 0 and 3.

2.2 Concept of fuzzy resemblance degree

The reasoning made in the previous paragraph
concerns a unique character. Nevertheless, it
permitted us simply of illustrating the concept of
fuzzy inclusion degree. Really, the comparison
between two varieties necessitates to take in
consideration all characters. We use a fuzzy
rescmblance degree as we compare the resemblance of
two sets and not an element and a set represented by
his vector center like the case of membership degree.

Definitions: 1. The fuzzy resemblance degree Dy, is
the generalization of the fuzzy inclusion degree to the
case where we consider a number n of intervals. Let
Vi the reference variety defined by the intervals I,
and V the variety of test defined by Ji with 1< i <n.
The fuzzy resemblance degree is dcfinite by the
following's relationships:

- If we consider a vector with n intervals:

v 1&
Dy (VR’V)Z;{Z D ctusion (13233
i-1

221
- if we consider a fuzzy curve (sce below):

I fx ;
DR(VR ’V)zg_—i_ II Dinclusiou ( [i 7‘] i )(X)(?x

2.2.2)
2. Let Iasetofclasses, and i an arbitrary element of
L. A fuzzy set of fuzzy resemblance degree of 1 is a set
of couples (i. Dy A (D) where DR_,\(i) measures the

fuzzy resemblance degree of the class i with all the
classes of 1.

Remarks: 1. we can use the same notations and the
same terminology of the theory of fuzzy set.

2. If the set of departure of the function of fuzzy
rcsemblance is reduced to vectors. we recover in this
case. the fuzzy membership's degree.
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2.3. Concept of fuzzy curve

In order to facilitate the task of multidimensional
reasoning to agronomist experts, we have proposed to
represent graphically each variety with a curve in the
following manner:

............ -

Figure 2.4. Examples of classic and fuzzy curve

The axis of X indicates the n° of the dimension, of

the multidimensional space. The axis of the Y
indicates the corresponding interval code. So, we
make a projection of the multidimensional space on
the plan. This operation is easicr to imagine and to
analyze.
The figure (2.4) illustrated the difference between the
curves. A curve (b) is a classic one, but those of the
curve (a), (c) and (d) are fuzzy. It is going to describe
the best the data.

These fuzzy curves represent the best the reality.
Indeed, if we represent the data with a classic curve,
we lose some information. The examples of the figure
(2.4) present threc different fuzzy curves (a), (c ) and
(d), which has thc same middle curve (b). These
curves generated by neural networks [4]f7].

3. Optimization of encoding by the densest
intervals

The encoding technique by intervals introduces in

the previous section facilitates pleasantly the data’s
description. It wilf scrve as a basis for the creation of
very superior systems in artificial intelligence.
However, the fact of considering the uniform interval
for describing a character could conceal some
information. Indeed, we consider the following
example:
The character "shape" of the SOLIDO variety (Nun
5062) of the species tomato[l], is described by the
expression "lightly flattened, flattened, rounded,”
which the encodes is respectively 5, 3 et 7, so, by the
[3,7] interval.

But, the shape’s description “lightly flattened ”,
stake in the first position is rife than the “flattened”
one, stake in the second position. This last description

[y

is rife than the “rounded” one. Thus, this last
information is hidden in the interval. The following
table illustrate such situations:

Charadter Description Codes | description’s | densest
mterval Intervals
caliber | middle, small, | $,3,7 3.7] [5]
big
number of | 5-11 generally. | 6-7,.5- [5, 11} f6.7]
stalls 6-7 11

~ In this part, we proposc a optimization of the
previous encoding technique that permits to overcome
this inconvenience. The purpose of the method is to
describe objectively the data in taking in consideration
all the information.

The method*s principle is simple and intuitive. It's
consists simply to add in ambiguous case onc or
several other subintervals to the interval of
description. These added subintervals representing the
densest parts, the minus-densest, etc.. according to the
precision that we want. So, we can represent well the
information.

In consequence, we must necessitate an adaptation
of the new fuzzy concepts exposed in first section
such: " fuzzy inclusion degree ", " fuzzy resemblance
degrec " and " fuzzy curve ",

3.1. Concept of fuzzy inclusion degree

This degree could be easily generalized in order to
take in consideration the densest intervals. Indeed. let
I=[a,b] be the interval describing a given character C
for a reference variety VR, and J=[xi, yi], the one
representing the same character C for a second
variety V. And let L= (b- a;), the width of I, and |,
=(yi - xi), the one of J;, O; the center of I,, and G; the
one of J;. with:

- 0<i<n,

- if 0<j<i < n, then [; (respectively J,) is denser than [
(respectively 1),

- I, and J,, are the intervals of description who contain
all the other densest subintervals.

The similarity between VR and V, relativelv to the
character C. necessitates -the measurement of fuzzy
inclusion degree of I, in J, with taking into account
the other densest intervals. Let us consider the degree
of inclusion between two any intervals definite in the
previous section by the previous relations (2.1.1) and
(2.1.2).

The Ddense inclusion degree that we suggest that
takes into account the densest parts is a linear
combination of the fuzzy inclusion degree for the all
intervals describing a character. Le., the interval of
description and all the densest intervals. It is definite
in the following manner:
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i=n
dese(l()’JOFz -uiDinclusion(IhJi) (3‘1'1)
i=0
under the constraint:
Z Mo =l (3.1.2)
i 0
Where: £, is a number that determines the weight

of the density for each interval in the resolution.

Examples of applications: We consider the following
examples, where we have the same imterval of
description, but the densest parts are different. We use
the equation (2.1.2) for K= 0.2. Also, we consider the-
case where we have n= 1. that is, wherc we have the
interval of description and an other interval
representing the densest part of this description's
interval. We also consider the case where. x4 ;=0.5
for i= 0.1, i.e., when the weight of discrimination of
the description's interval is equal to the one of the
densest part. We have the following results:

The fuzzy inclusion degree without considering the
denscst parts gives 1 for all the description because
the intervals of descriptions are identical. (Sec table 1)

The fuzzy inclusion degree with considering the
densest parts gives us different values. These values
depend on the position of the densest part in the
description’s interval. (See table 2)

So. this inclusion degree represents the best the
rcality.

Table 1 Classic fuzzy inclusion

l n
Dg (Vg ’V):;ZDdense(Ii’Ji)
i=1
3.2.1)
- If we considers a fuzzy curve:

1 fa
DR(VR:'V):—;:{ !‘ D 4. (I3 XX)Ox
(3.2.2)

Remark: The Dye.. degree can be defined differently
for all the n intervals. In deed, we can consider for [;
and J; x densest intervals and for I; and J; y densest
intervals. The number of the densest Intervals of each
description depends of the descriptions and of -the
precision that we want. The value of 4 ;can be
chosen like a weight that affect the resolution.

3.3. Concept of fuzzy curve

The introduction of the notion of the densest
intervals made the curves fuzzy as illustrated in the
figure ( 3.1), where the shaded part represents the
densest part. These figures show four curves-with the
same fuzzy curve of description, but the densest part
are different.

Dverusion [ 4.6} [9.11}, (6.8}
[4,11] [4.11] [4,11]
[46][411] 1 1 1
[9,11] [4.11] 1 1 1
[ 6,81 4,11] 1 1 1
Table 2 Densest fuzzy inclusion
DDENSE [ 4’6]7 [991 1]: [6)813
[4,11] [4.11] {4,11] -
[ 4.61 |[ 4’111 1 0503369 0_724446 Flgure 3.1: Examples Of the new fuzzy curves
911}, 14,11 0.503369 1 0.582449
[[ 6 8]]’ ‘[[ 3 ‘1 l]] 0724346 10 582449 1 These curves are generated by the neural networks

3.2. Fuzzy resemblance degrec

The fuzzy resemblance degree will stay the same
since it will be based on Ddense inclusion degree.
Indeed, we define it in the following manner:

The fuzzy resemblance degree Di is the
generalization of fuzzy inclusion degree to the case
where we consider n intervals. Let VR the reference
variety defined by the intervals codes 1, and V the
varicty of test definite by J, with I<isn The
rescmblance degree is definite by:

- If we consider a vector with n intervals:

4]. So, we see that these curves are different because
their densest parts are different.

4. Conclusion

The results obtained with these new fuzzy concepts
are encouraging. They open a domain of very hopeful
research.
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