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Abstract:

An image of a set that produces a multiset from an ordinary set and its extension to fuzzy

multisets is considered. For each input element, its image is added to the output regardless whether or not
there already exists the same image in the output. Theoretical properties such as commutativity of the
image with a-cut or multiset addition are proved. Generalization to the image by multivariable functions is

moreover defined.
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1 Introduction

Multisets that are also called bags [3, 6] have weaker
mathematical properties than ordinary sets, and
therefore have not extensively been studied theoreti-
cally. Nevertheless, multisets are commonly observed
in various processes in information systems. For ex-
ample, a standard language for relational database
actually handles multisets [2].

Fuzzy multisets have been proposed by Yager [13]
and several authors have studied its theory and ap-
plications {4, 5, 10, 11, 12, 14], and recently, the au-
thors (8, 9] have found new basic relations and op-
erations by using the notion of the membership se-
quence for each element, whereby new aspects have
been opened in fuzzy multiset theory.

In this paper a new image that produces a multiset
from an ordinary set is proposed. This image natu-
rally arises in information processing, as we will see
below. Theoretical properties of the image herein is
shown to contrast them with those for the ordinary
image.

2 Multiset-valued image

Assume first that all universal sets considered herein
are finite. Let X = {z1,...,Zm} and Y = {y1, ..., Yn}
be two universal sets and assume a mapping f: X -
Y. Let us consider a simple example by which the
idea of the new image is introduced.

Example 1. Let X = {z1,...,25}, ¥ = {y1,..,¥s}
and f be given by f(zi) = f(z2) = f(z3) = v,
f(z4) = f(zs) = yo Assume A = {z),%2,%3,74},
then f(A) = {y1,y2}. Let us consider the following
simple procedure:

“ Take elements in A one by one; apply f
and output the resulting symbol for the ele-
ment sequentially, regardless whether or not
the symbol already exists in the collection of
output symbols.”

When applied to the above example, the output
is y1,¥1,91,y2 for the input A = {z1,za,23,24}
Since the input is a set, the output should be iden-
tical for the change of the order of the input, e.g.,
Z1,T2,T4,Z3. Thus, the output should be a multiset.

The above procedure is interpreted as a multiset-
valued mapping defined on the collection of all sub-
sets of X. It is denoted by f[A], in order to distin-
guish it from the ordinary image f(A). f[A] is called
a multiset-valued image.

For the above example with A = {z, 22, 23,24},

f[A] {y11y17y17y2}

= {3/:1/1, 1/y2}
whereas f(A4) = {y1,y2}-

(1)

Remark: The symbol {-} is used for both ordinary
sets and multisets. Note also that the right hand
expression of (1) uses Cg(y) which means the number
of symbols of y in B. Generally,

B = {CB (yi)/yi}izl,u,m-
A simple method of calculating the ordinary image
f(A) in the following uses f[A}:

1. Apply f sequentially to each z € A and output
f(z). (Thus, f{4] is obtained.)

2. For more than one occurrence of a symbol, say
Y, ..,y in flA], reduce them into one occurrence:
Y.
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The mapping defined by the above step 2 is denoted
by P. P is defined on the class of all multisets of ¥
onto the class of all ordinary sets of Y. P(f[A]) =
{y1,y2} in the above example. The mapping P is
called a projection here. Thus, we have

f(4) =P(fl4]) (2)
Notice also that
fIAl = 6P f(=) (3)
z€A

using the multiset addition @, while the ordinary im-
age 1s

= fl® (4)

€A

using the union U.

It is straightforward to generalize the multiset-
valued mapping f[-] to the domain of fuzzy sets and
fuzzy multisets. Let

A= {(l',u), 7(33(’#’)}

be a fuzzy multiset of X, i.e., an arbitrary pair (z, u)
and (', u’') may or may not be identical. Thus,

FlA = {(f (@), ), -, (f(2"), 1)} ()

The authors have introduced the membership se-
quence [8]. Namely, for a given fuzzy multiset B =
{(y,v), ..., (¥, ¥)} of Y, the membership sequence for
an element y; € Y is the sequence made from of the
collection of all memberships for y,, arranged into
the decreasing order: The membership sequence is

denoted by
pp (i), o i (i)
(ph(y:) > - > up(yi)). The basic operations of the

union and intersection are defined using the member-
ship sequence. Appendix A provides a brief review of
these operations.

Using the membership sequence, the projection P
is defined:

(6)

In contrast with f[A], we define f(A) for a fuzzy
multiset to be f(P(A)): It is obvious to see that
f(P(A)) is defined by using the extension princi-
ple. Thus, f(A) is an ordinary fuzzy set regardless
whether A is a multiset or not.

pps)(¥:) = pp(vi).

We have the following propositions, of which the
proofs are given in Appendix B.

Proposition 1.

F(P(A)) = P(flA)).

Example 2

A= {(z1,0.1),(21,0.3), (z4,0.5), (z4,0.5), (z5,0.4) }
is a fuzzy multiset. Using f in Example 1,

fTAl = {(¥1,0.1), (1, 0.3), (y2, 0.5), (y2,0.5), (32, 0.4) }.
Moreover,

P(A) = {03/I1,05/I4,04/1E5}

Proposition 2.(Commutativity with the a-cut)
Let A be a fuzzy multiset of X. For an arbitrary
€ (0,1],

flAa] = (flADe

Proposition 3. Let A;, A, be fuzzy multisets of X.
Then,

flive As] = flAi] © f4] (7
flA1UAs] 2 flA]U flAs] (8)
flAiNA42] € flA1]N flAs] 9)
flAr @ A) C  f(A)® f(4) (10)
flAIUA) = f(41)U f(4) (11)
flAiNA4s) C f(A)N f(A2) (12)
P(A1® A2) = P(A1)UP(42) (13)
P(A; UA) = P(A)UP(A2) (14)
P(A1NAz) = P(A)NP(4) (15)

3 Multivariable functions
Let us consider three universes W = {wy,...,w,},
X ={z1, .nzm}tand Y = {y1, ...,y }. Consider two-

variable function f:W x X — Y. Our purpose is to
consider f[A, B] where A (resp. B) is a fuzzy multiset
of W (resp. X).

Assume
A = {(w,p),..,w, )}
B = {(z,v),... (& v)}

in which a symbol may be repeated. A multiset

Cartesian product is defined:

Ax B={{(w,z),pAv), .., ((w,z')pu Av)}

in which all combinations of symbols in A and those

in B are listed.
Now, the definition of f[A, B] is as follows.

flA, B = {(f S (fw

Then we have

), BAY), ..
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Proposition 4.

f(P(A),P(B)) = P(f[A, B]).
Proposition 5. For an arbitrary « € (0, 1],
f[Aay Ba] = (f[Av B])a

Proposition 6. Let Ay, 45 be fuzzy multisets of W
and B be a fuzzy multiset of X. Then,

flA1® A3, B] = f[A,B]® f[42,B]  (17)
flA1UAs, B] 2 f[A1, B]U f[A2, B] (18)
flAi1 A, Bl C  fl[A, B]N f[A2,B]  (19)
flA1® Az, B) C f(A,B)o f(A2,B)  (20)
flA1UA:, B) = f(A,B)Uf(A2,B) (21)
f(AiINA;,B) C f(A,B)N f(42,B) (22)

Functions f(w,z,...,z) of many variables can be
dealt with in the same way. We omit the detail.

4 Conclusion

A multiset-valued image of fuzzy multisets has been
studied and theoretical properties have been con-
trasted with the ordinary image. In particular, com-
mutativity of the new image with a-cut has been
proved.

Applications include query languages for fuzzy
database, since it is well-known that the ordinary
SQL handles crisp multisets. Therefore fuzzy SQL (1]
should deal with fuzzy multisets. Moreover applica-
tions to information retrieval [7} should be studied.

Another interesting property is that infinite fuzzy
multisets should be studied {9}, while all arguments
for the crisp case is finite. Thus, future studies of the
theory and applications are promising.
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Appendix A: Basic operations of
fuzzy multisets

A crisp multiset of X is characterized by Car: X —
N which imgplies that the number of copies of z
is Cur(z) We may write a multiset M as M =
ki kn
{ki/z1,. s knjza} or M = {Z1,.,T1,.cs Ty
to show Cpr(z;) = k.
For example, let X = {a,b,¢,d}. A multiset

M = {a,a,b,b,b,c}

is expressed as
M ={2/a,3/b,1/c,0/d}.

We have Cy(a) = 3, Cm(b) = 2, Cplc) = 1,
Cun(d) =0.

Basic relations and operations for crisp multisets
are ass follows.

¢ (inclusion):
MCN& Cylz) <Cn(z),Vr e X.

(equality):
M=N & Cy(z)=Cn(z), Yz € X.

¢ (union):

Cuun(z) = max(Cu (), Cn(z)).

(intersection):
Cunn(z) = min[Crp(z), Cn(z)].

(addition):
Cuen(z) = Cp(z) + Cn(z).

A fuzzy multiset is defined to be a crisp multiset
of X x (0,1} [13]. An example is

A= {(a,0.2), (a,0.3), (b, 1), (b,0.5), (b,0.5)}

of the universe X = {a, b, ¢, d}.

For an arbitrary z € X, we can arrange those (z, u)
into the decreasing order of thee membership. We
thus write

ITACINTACINNTACS

(p(z) > p4(z) > ... > ph(z)) and call this sequence
a membership sequence.

If the universe is finite, we can assume that all
the membership sequences are of the same length, by
appending appropriate numbers of zero memberships.

For the above example,

A ={(0.3,0.2,0)/a,(1,0.5,0.5)/b,(0,0,0)/c, (0,0,0)/d}.

1. inclusion:

ACB e u,(z) <pplz),j=1,.,p Yz €X.
2. equality: _
A=Be ph(z)=pgx),j=1.p Vz € X.

3. union: _
whop(x) = ph(z) v up(z), j=1.,p Ve X

4. intersection: _
Winp(z) = ply(z) Apug(x), j=1,.,p, vz € X.

5. a-cut:
u;(z) <a = Ca,(z)=0,
wi(z) > e, pi (@) <a = Ca,lz) =7,

j=1..,p.
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6. addition: Addition is defined by the addition of
crisp multisets of X x [0, 1].

Proposition Al. Let A and B are fuzzy multisets
of X. Then, A C B if and only if A, C B, for every
a € (0,1]. Moreover A = B if and only if A, = B,
for every a € (0,1].

Proposition A2. Let A and B are fuzzy multisets
of X, and fix a € (0, 1] arbitrarily.

Ax U Bq,
Ax N B,.

(AUB)y =
(ANB)e =

Proposition A3. Let A, B, and C be fuzzy mul-
tisets of X. Then we have

AUB=BUA, ANB=BnA,
AU(BUC) = (AUB)UC,
AN(BNC) = (ANB)NC,
(ANB)UC = (AUC)N(BUC),
(AUB)NC = (ANC)U(BNC).

Appendix B:
tions

Proofs of proposi-

Proof of Proposition 1

Ify ¢ f(X),

trpan () = wpisan(y) = 0.

Ify € f(X),
preanly) = \V  uray(@)
z€f~1(y)
= \  wh(@) = peisap @)

z€f~1(y)

Proof of Proposition 2

Let us fix an arbitrary a € (0,1]. Assume also
that A = {(z',4),...,(@",4")}. Suppose that
{(z,v),..., (2", V") } is the collection of all elements in
A such that g > a. Then, A, = {(z,1),..., (2", 1)},
hence

f[Aa] = {(f(z)’ 1)’ R (f(zu)y 1)} = (f[A])a
For P,

T € P(Ay) & uh(z) > a ez € P(Ad),.

Proof of Proposition 3

Let us first assume that all multisets are crisp. For
addition, A, ® A, simply lists elements in A; and A,
with redundancies. Hence f{4, @ A,] is exactly the
same as thee listing of f[A4;] and f[A4:]. It therefore
is obvious that

flAL © Az] = flAi] © flAz].

Next, notice

Crrayglz) =

Y. Cala),

€ f~H{y)

whereby we have

1}

Crag) VvV Crran(y)

( > Ca®)

zef~1(v)

v Z Ca,(z))

z€f~1{y)
> (Ca,(z) VCay(2)
z€f~Hy)

= Cf[AluAgl(y)'v
Cragnslany) = Crag@) A Cria(y)

= Z Ca,(x))

zef-Y(y)

ALY Cal@)

z€f~H(y)

> Y (Cal@) ACay(a)
z€f~Hy)

= Cf[AlﬂAg](y)'

Cf[m}uf[A:](?/)

IN

The other relations are proved likewise.

Now, consider fuzzy multisets. For proving the
same set of relations for the fuzzy case, we can use
Proposition 2 and Proposition A2. For example,

(fl[A]U flA2])a = flAi]a U flA2]a
= flA1a]U flA24]
2 flA1a U As,]
FA1 U Ay, ]
= flA1U A

From Proposition Al, we have thee second relation.
The other relations are proved in the same way.

Proof of Proposition 4

Let (wy, 1) and (z1, v1) be the elements for which g,
(resp.vy) is the maximum among all p's (resp. v's).
Then the left hand side is (f(wy, z1), 41 A v1) using
the extension principle. while the element of the max-
imum membership in f[4, B] is obviously p Av; with
the corresponding element is f(wy, ;). Thus the de-
sired equality follows.
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Proof of Proposition 5

The proof is almost the same as that for Proposition
2, and therefore the details are omitted.

Proof of Proposition 6

As the proof of Proposition 3, let us first suppose that
all multisets are crisp.

The first equation is obvious.
Proposition 3.

For the second relation, we observe

See the proof of

Ctlas.Bluf(az,8(Y)
= Cya, B(¥) V Crla,,B/(Y)

= (Y Caxslwa)
(w,z)€f~1{y)
VS Cama(w,2)

(w.z)ef~(y)

S :>: (CA1 XB('I.U,IE)
(w,z)e f~Hy)
VCAsz(’LU,.’B))

= :z Ca,(w) - Cp(z)
(w,z)ef~1(y)
VCy,(w) - Cplw,x))

= :S (CAl (UJ) v CAz ('U.))) ) CB(’UJ, I))
(w,z)ef~1(y)

= :z (Clayuaxp(w, T)
(w,z)ef~1(y)

= Cfla,ua,,B)(Y)-
The third relation is proved as follows.

Criar,BInf42,B)(Y)
= Cya,,8/¥) A Cla,.8(Y)

= ( >

(w,z)ef~Hy)

A

Ca,xB(w,z))

Ca,xB(w,T))

(w,z)€f~1(y)
Z :z (CAle(w,z)

(w,z)ef~Hy)
AC a,xB(W, T))
= ‘Z Ca,(w) - Cp(x)
(w,2)€f=1(y)
ACA?(w) ) CB (wx ZE))
= S (Ca(w)ACa,(w)) - Ca(w,z))
(w,z)ef~y)
= >
(w,z)ef~(y)
= Cyla,na,,B)(Y)-

(Cia,naz)xs(w, )

In the fourth relation, the right side is a multiset,
while the left side is an ordinary set, and hence the
inclusion is valid. For thee rest two relations, the
situation is just the same as those for ordinary sets
in view of the definition f(-). Thus all relations for
the crisp case is proved.

For the fuzzy case, we can use the commutativity
of the operations with the a-cut, as in the proof of
Proposition 3. For example, using Proposition 5, we
have

(f[A1 U Az, B))o

(f[(A1 U A)q, Ba]

(fl(A1)a U (42)a, Ba]
(f[(Al)av Ba] u f[(AQ)ou Ba]
fl41, Bla U f[A2, Bla
(flA1, B]U f[A2, B])a-

oy ono

]

From Proposition Al, we have the second relation
for the fuzzy case. The other relations are proved in
exactly the same way.
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