On (the product of) normal F-subpolygroups

Abbas HASANKHANIa, Mohammad Mehdi ZAHEDIb

a. Dept. of Math., Sistan and Baluchestan University, Zahedan, Iran

b. Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran Tel & Fax: +98-341-263244

E-mail: Zahedi@arg3.uk.ac.ir

Abstract

In this note by considering the notions of F-polygroups, the product of F-polygroups, F-subpolygroups and (weak) normal F-subpolygroups two questions are given. Then by an example it is shown that the answer of one of the questions (posed in the paper [12]) is in general negative. In other words, the product of two normal F-subpolygroups need not be normal.

Keywords: Fuzzy Sets, Polygroups, F-polygroups, (weak) normal F-subpolygroups.

1. Introduction and Preliminaries

Zadeh in 1965 [9] introduced the notion of fuzzy subsets of a nonempty set A as a function from A to [0,1]. Rosenfeld in 1971 [8] defined fuzzy subgroups and obtained some basic results. A polygroup is a completely regular, reversible-in-itself multigroup in the sense of Dresher and Ore [5]. These systems occur naturally in the study of algebraic logic [2,3]. Ioulidis in 1981 [7] studied the concept of polygroup, which is a generalization of the concept of ordinary group. Zahedi, Bolurian, and Hasankhani in 1995 [10] introduced the concept of a fuzzy subpolygroup, which is a generalization of the concept of a fuzzy subgroup. Zahedi and Hasankhani [11] defined the notion of F-polygroup, which is a generalization of polygroups.

Definition 1.1. Let $A \neq \emptyset$ and "o" be a function from $A \times A$ to $P^*(A) = P(A) \setminus \{\emptyset\}$. Then "o" is called a hyperoperation on A.

Definition 1.2. If $X, Y \in P^*(A)$, then we define $X \circ Y$ as:

$$X o Y = \bigcup_{(x,y) \in X \times Y} x o y.$$

Notation. Let "o" be a hyperoperation on A and $a \in A, X \in P^*(A)$. Then by aoX and Xoa we mean $\{a\}oX$ and $Xo\{a\}$ respectively.

Definition 1.3 (see [2,3,6,7]). Let "o" be a hyperoperation on H. Then (H,o) is called a polygroup or quasi-canonical hypergroup iff

- $(i) xo(yoz) = (xoy)oz \forall x, y, z \in H,$
- (ii) There exists an element $e \in H$ such that

$$xoe = eox = \{x\}, \ \forall \ x \in H.$$

(e is called the identity element of H.),

(iii) for each $x \in H$, there exists a unique element $x' \in H$ such that

$$e \in xox' \cap x'ox$$
.

(x') is called the inverse of x and is denoted by x^{-1} .

 $\begin{array}{ll} (iv) & z \in xoy \Rightarrow x \in zoy^{-1} \Rightarrow y \in x^{-1}oz, \\ \forall x,y,z \in H. \end{array}$

Definition 1.4. [9]. Let X be a set. A fuzzy subset of X is a function $\mu: X \to [0,1]$.

Remark 1.5. Throughout this note I is the unit interval $[0,1] \subseteq \mathbb{R}$, and I^A is the set of all fuzzy subsets of A. If $\mu \in I^A$, then by $supp(\mu)$ we mean the set $\{x \in A : \mu(x) \neq 0\}$. Let $\mu, \eta \in I^A$. Then $\mu \leq \eta$ iff $\mu(x) \leq \eta(x)$, for all $x \in A$.

Definition 1.6. Let μ, η and $\mu_{\alpha} \in I^{A}$ where α is in the index set Λ . We define the fuzzy subsets $\mu \cap \eta, \mu \cup \eta, \bigcap_{\alpha \in \Lambda} \mu_{\alpha}$ and $\bigcup_{\alpha \in \Lambda} \mu_{\alpha}$

as follows:

$$(i) (\mu \cap \eta)(x) = \min\{\mu(x), \eta(x)\},\$$

$$(ii) (\mu \cup \eta)(x) = \max{\{\mu(x), \eta(x)\}},$$

$$(iii) \left(\bigcap_{\alpha \in \Lambda} \mu_{\alpha}\right)(x) = \inf_{\alpha \in \Lambda} \mu_{\alpha}(x),$$

$$(iv)$$
 $(\bigcup_{\alpha \in \Lambda} \mu_{\alpha})(x) = \sup_{\alpha \in \Lambda} \mu_{\alpha}(x)$, for all $x \in A$.

Definition 1.7. Let $f: A \to B$ be a function and $\mu \in I^A$, $\eta \in I^B$. Then the functions $f(\mu)$ and $f^{-1}(\eta)$ which belong, respectively, to I^B and I^A are defined as follows:

$$f(\mu)(b) = \begin{cases} \sup_{a \in f^{-1}(b)} \mu(a) & \text{if } f^{-1}(b) \neq \emptyset \\ 0 & \text{otherwise} \end{cases},$$
for all $b \in B$,

(ii)
$$f^{-1}(\eta)(a) = \eta(f(a))$$
, for all $a \in A$.

Definition 1.8. Let $a \in A, t \in I$. Then by a fuzzy point a_t of A we mean the fuzzy subset of A given below:

$$a_t(x) = \begin{cases} t & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$
.

2. F-polygroups

For any subset A of X, we let χ_A denotes the characteristic function of A.

Definition 2.1. Let $A \neq \emptyset$ and $I_*^A = I^A \setminus \{0\}$. Then

- (i) by an F-hyperoperstion "*" on A we mean a function from $A \times A$ to I_*^A , in other words for any $a, b \in A, a * b$ is a non-empty fuzzy subset of A.
- (ii) if $\mu, \eta \in I_*^A$, then $\mu * \eta \in I_*^A$ is defined by

$$\mu * \eta = \bigcup_{x \in supp(\mu), y \in supp(\eta)} x * y.$$

Notation 2.2. Let $\mu \in I_{\star}^{A}, B, C \in P^{\star}(A)$ and $a \in A$. Then

- (i) $a*\mu$ and $\mu*a$ denote $\chi_{\{a\}}*\mu$ and $\mu*\chi_{\{a\}}$ respectively,
- (ii) a*B, B*a, $\mu*B$, $B*\mu$ and B*C denote $\chi_{\{a\}}*\chi_B, \chi_B*\chi_{\{a\}}, \mu*\chi_B, \chi_B*\mu$ and $\chi_B*\chi_C$ respectively.

Definition 2.3. Let " * " be an F-hyperoperation on the non-empty set A. Then (A, *) is called an F-polygroupoid.

Definition 2.4. Let (H,*) be an F-polygroupoid. Then (H,*) is called a semi-F-polygroup iff

$$x * (y * z) = (x * y) * z, \quad \forall x, y, z \in H.$$

Definition 2.5. Let \mathcal{F} be a non-empty set. Then $(\mathcal{F}, *)$ is called a non-reversible F-polygroup iff

- (i) $(\mathcal{F}, *)$ is a semi-F-polygroup,
- (ii) there exists an element $e_{\mathcal{F}} \in \mathcal{F}$ such that

$$x \in supp(x * e_{\mathcal{F}} \cap e_{\mathcal{F}} * x), \forall x \in \mathcal{F}$$

(In this case we say that $e_{\mathcal{F}}$ is an F-identity element of \mathcal{F} .),

(iii) for each $x \in \mathcal{F}$, there exists a unique element $x' \in \mathcal{F}$ such that

$$e_{\mathcal{F}} \in supp(x * x' \cap x' * x).$$

(x') is called the F-inverse of x and it is denoted by $x_{\mathcal{F}}^{-1}$.

Defintion 2.6. Let $(\mathcal{F},*)$ be a non-reversible F-polygroup. Then $(\mathcal{F},*)$ is an F-polygroup iff

$$z \in supp(x * y) \implies x \in supp(z * y_{\mathcal{F}}^{-1})$$
$$\Rightarrow y \in supp(x_{\mathcal{F}}^{-1} * z),$$
$$\forall x, y, z \in \mathcal{F}.$$

(This property is called the F-reversibility of \mathcal{F} with respect to " * ".)

When there is no ambiguity, for simplicity of notation we use e and x^{-1} instead of e_F and x_F^{-1} respectively.

Example 2.7. Let $\mathcal{F} = \{a, b\}$. Then the following table denotes an F-polygroup structure on \mathcal{F} .

*	a	b	
a	$\frac{a}{0.7}, \frac{b}{0}$	$\frac{a}{0}, \frac{b}{0.3}$	
b	$\frac{a}{0}, \frac{b}{0.3}$	$\frac{a}{0.7}, \frac{b}{0}$	

Example 2.8. Let α be an arbitrary element of $I\setminus\{0\}$ and G be a group such that $x^2=e$, $\forall x\in G$. Then it is easily seen that the F-hyperoperation "*" which is defined as

$$(x * y)(z) = e_{\alpha}(xyz) \quad \forall \ x, y, z \in G$$

induces an F-polygroup structure on G, where e_{α} is a fuzzy point of G.

Throughout this note \mathcal{F} will denote an F-polygroup with F-hyperoperation "*" and e will denote the F-identity of \mathcal{F} .

Remark 2.9. Let $\mu_1, \mu_2 \in I_*^{\mathcal{F}}$. Then we have

(i) If
$$\mu_1(t) > 0$$
 $(\mu_2(t) > 0)$, then
$$t * \mu_2 \le \mu_1 * \mu_2 \quad (\mu_1 * t \le \mu_1 * \mu_2).$$

In particular,

$$e * \mu_2 \le (x * x^{-1}) * \mu_2, \ \forall \ x \in \mathcal{F}.$$

(ii) If $\mu_1 \leq \mu_2$, then

$$\mu_1 * x \le \mu_2 * x$$
, $x * \mu_1 \le x * \mu_2$, $\forall x \in \mathcal{F}$.

Lemma 2.10. Let $\mu \in I_*^{\mathcal{F}}, z \in \mathcal{F}$. Then

$$supp(\mu*z) = \bigcup_{t \in supp(\mu)} supp(t*z)$$

and

$$supp(z*\mu) = \bigcup_{t \in supp(\mu)} supp(z*t).$$

Theorem 2.11. (i) Let (A, o) be a polygroup. Then (A, *) is an F-polygroup where

$$x * y = \chi_{xoy}, \quad \forall \ x, y \in A.$$

(* is called the F-hyperoperation induced by "o".)

(ii) Let (A,*) be an F-polygroup and $supp(x*e) = supp(e*x) = \{x\} \ \forall x \in A$. Then (A, \odot) is a polygroup where

$$x \odot y = supp(x * y), \ \ \forall \ x, y \in A.$$

(\odot is called the hyperoperation extracted from *.)

Definition 2.12. If

$$(x * e)(x) = (e * x)(x) = 1, \quad \forall \ x \in \mathcal{F},$$

then we say e is of degree 1.

Corollary 2.13. Let (A, o) be a polygroup. Then the F-identity of F-polygroup (A, *), which is defined in Theorem 2.11 is of degree 1.

Theorem 2.14. Let $(\mathcal{F},*)$ be an F-polygroup. Then

(i) $e^{-1} = e$ and e is unique. Also $supp(e * e) = \{e\},$

$$(ii)(x^{-1})^{-1} = x, \quad \forall \ x \in \mathcal{F},$$

$$(iii) \bigcup_{x \in supp(\mu_1)} x * \mu_2 = \mu_1 * \mu_2 =$$

$$\bigcup_{y \in supp(\mu_2)} \mu_1 * y, \forall \mu_1, \mu_2 \in I_*^{\mathcal{F}}$$

$$(iv) (\mu_1 * \mu_2) * \mu_3 = \mu_1 * (\mu_2 * \mu_3),$$

 $\forall \mu_1, \mu_2, \mu_3 \in I_*^{\mathcal{F}}$

Definition 2.15. Let $\mathcal{F}_1, \mathcal{F}_2$ be two F-polygroups and $f: \mathcal{F}_1 \to \mathcal{F}_2$ be a function such that $f(e_1) = e_2$. Then

(i) f is called a homomorphism iff

$$f(x * y) \le f(x) * f(y), \forall x, y \in \mathcal{F}_1$$

(ii) f is called a strong homomorphism iff

$$f(x * y) = f(x) * f(y), \forall x, y \in \mathcal{F}_1$$

3. The normal F-subpolygroups

Definition 3.1. Let $\emptyset \neq H \subseteq \mathcal{F}$. Then H is called an F-subpolygroup iff

(i) if
$$x \in H$$
, then $x^{-1} \in H$

$$(ii) \; supp(x*y) \subseteq H, \ \ \, \forall \; x,y \in H.$$

In this case we write: $H <_{F+P} \mathcal{F}$.

Note that condition (ii) of above definition is equivalent to $x*y \leq \chi_H, \forall x,y \in H$.

Example 3.2. Let $\mathcal{F} = \{e, a, b\}$. Then the following table shows an F-polygroup structure on \mathcal{F} .

*	e	a	b
e	$\frac{e}{1}, \frac{a}{0}, \frac{b}{0}$	$\frac{e}{0}, \frac{a}{1}, \frac{b}{0}$	$\frac{e}{0}, \frac{a}{0}, \frac{b}{1}$
a	$\frac{e}{0}, \frac{a}{1}, \frac{b}{0}$	$\frac{e}{0}, \frac{a}{1}, \frac{b}{0}$	$\frac{e}{1}, \frac{a}{1}, \frac{b}{1}$
b	$\frac{e}{0}, \frac{a}{0}, \frac{b}{1}$	$\frac{e}{1}, \frac{a}{1}, \frac{b}{1}$	$\frac{e}{0}, \frac{a}{0}, \frac{b}{1}$

Now let $H=\{a\}$. Then (H,*') is an F-polygroup, where "*" is the restriction of "*" to $H\times H$. However H is not an F-subpolygroup of $\mathcal F$, because $a^{-1}=b$ in $\mathcal F$ and $b\not\in H$.

Lemma 3.3. Let $\emptyset \neq H \subseteq \mathcal{F}$. Then $H <_{F-P} \mathcal{F}$ if and only if $supp(x * y^{-1}) \subseteq H$, $\forall x, y \in H$.

Corollary 3.4. $\{e\} <_{F-P} \mathcal{F}$.

Definition 3.5. Let $H <_{F-P} \mathcal{F}$. Then

(i) H is said to be weak normal in \mathcal{F} $(H \triangleleft_{F-P}^{w} \mathcal{F})$ iff

$$x * H * x^{-1} \le \chi_H, \quad \forall \ x \in \mathcal{F},$$
 (1)

(ii) H is said to be normal in $\mathcal{F}\left(H \triangleleft_{F-P} \mathcal{F}\right)$ iff

$$x*H*x^{-1}=\chi_H, \ \forall \ x\in \mathcal{F}.$$

Note that (1) is equivalent to:

$$supp(x * H * x^{-1}) \subseteq H, \ \forall \ x \in \mathcal{F}.$$

The following example shows a weak normal F-subpolygroup which is not normal.

Example 3.6. Consider the Example 2.7. Let $H = \mathcal{F}$. Then it is obvious that $H \triangleleft_{F-P}^w$. Since

$$(x * H * x^{-1})(a) \le 0.7 < 1, \forall x, a \in \mathcal{F}.$$

we conclude that $H \not\triangleleft_{F-P} \mathcal{F}$.

Now we give an example of a normal F-subpolygroup.

Example 3.7. Consider a group G with order greater than 1 and $x^2 = e$, $\forall x \in G$. Let $\alpha \in (0,1)$. Define the hyperoperation "*" on G by

$$(x * y)(z) = \begin{cases} e_1(xyz) & \text{if } z = e \\ e_{\alpha}(xyz) & \text{if } z \neq e, \end{cases}$$

where e_1, e_{α} are fuzzy points of G. After some manipulation it can be seen that (G, *) is an F-polygroup, $e_F = e$ and $x_F^{-1} = x$, $\forall x \in G$. Now let $H = \{e\}$. Then by Corollary 3.4 we have $H <_{F-P} G$. And it is not difficult to check that

$$x * H * x = \chi_H, \quad \forall \ x \in G.$$

Thus $H \triangleleft_{F-P} G$.

Note that in the above example the identity is not of degree 1, because if $x \neq e$, then $(x * e)(x) = \alpha \neq 1$.

Theorem 3.8. Let $e \in \mathcal{F}$ be of degree 1. Then

$$N \triangleleft_{F-P}^{w} \mathcal{F} \text{ iff } N \triangleleft_{F-P} \mathcal{F}.$$

Lemma 3.9. Let $\mu \in I_*^{\mathcal{F}}$. Then

$$x*\mu*y = \bigcup_{t \in supp(\mu)} x*t*y, \ \forall \ x \in \mathcal{F}.$$

Lemma 3.10. Let $n \in \mathbb{N}$ and $w, a_1, \dots, a_n \in \mathcal{F}$. If $w \in supp(a_1 * \dots * a_n)$, then $w^{-1} \in supp(a_n^{-1} * \dots * a_1^{-1})$.

Theorem 3.11. Let $H, K <_{F-P} \mathcal{F}$ and $H \odot K = \bigcup_{x \in H, y \in K} supp(x * y).$

Then

(i) $H \odot K <_{F-P} \mathcal{F}$ if and only if $H \odot K = K \odot H$,

(ii) if $K \triangleleft_{F-P}^w \mathcal{F}$, then $H \odot K <_{F-P} \mathcal{F}$,

(iii) if $H, K \triangleleft_{F-P}^w \mathcal{F}$, then $H \odot K \triangleleft_{F-P}^w \mathcal{F}$.

Corollary 3.12. Let $e \in \mathcal{F}$ be of degree 1 and $H, K \triangleleft_{F-P}^w \mathcal{F}$. Then $H \odot K \triangleleft_{F-P} \mathcal{F}$.

Question 3.13. [12]. If $H, K \triangleleft_{F-P} \mathcal{F}$, is $H \odot K \triangleleft_{F-P} \mathcal{F}$?

Answer: the following example shows that the answer is not affirmative in general.

Example 3.14. Let $V = \{e, a, b, c\}$ be the Klein 4-group and $\alpha \in (0, 1)$. Define the F-hyperoperation "*" on V by

$$(x * y)(z) = \begin{cases} e_{\alpha}(xyz) & \text{if } z = c \\ e_{1}(xyz) & \text{if } z \neq c \end{cases}$$

where e_1 and e_{α} are fuzzy points of V. Now it is easy to check that

$$supp(x * y) = \{xy\}, \quad \forall x, y \in V.$$
 (2)

Then by using (2) and some manipulations it can be seen that (V,*) is an Abelian F-polygroup and also $e_V = e$ and $x_V^{-1} = x$, $\forall x \in V$. Now let $H = \{e,a\}$ and $K = \{e,b\}$. Then from (2) and some calculations we get that $H, K <_{F-P} \mathcal{F}$. Now we show that $H, K <_{F-P} V$. Let $x \in V$ be arbitrary. Then we have:

$$supp(x*e*x) = supp(x*x) = \{e\},\$$

and

$$supp(x*a*x) = supp(x*x*a)$$
$$= supp(e*a)$$
$$= \{a\}.$$

Therefore $supp(x*H*x) = \{e,a\}$. Now

$$(x * H * x)(e)$$
= $max\{(x * e * x)(e), (x * a * x)(e)\}$
= $max\{(e * e)(e), (e * a)(e)\}$
= $max\{e_1(e), e_1(a)\}$
= 1,

and

$$(x * H * x)(a)$$
= $max\{(x * e * x)(a), (x * a * x)(a)\}$
= $max\{(e * e)(a), (e * a)(a)\}$
= $max\{e_1(a), e_1(e)\}$
= 1.

Thus

$$x*H*x=\chi_{_H}, \quad \forall x\in V,$$

which means that $H \triangleleft_{F-P} V$. Similarly $K \triangleleft_{F-P} V$. Now we show that $H \odot K \not \triangleleft_{F-P} V$. To do this first we prove that $H \odot K = V$ and then we show that $(x * V * x)(c) < \chi_V(c)$, for all $x \in V$. We have:

$$H \odot K = supp(e * e) \cup supp(e * b)$$

$$\cup supp(a * e) \cup supp(a * b)$$

$$= \{e\} \cup \{b\} \cup \{a\} \cup \{c\}$$

$$= V,$$

and

$$(x*c*x)(c) = (e*c)(c) = \alpha < 1,$$

and

$$(x*t*x)(c) = (e*e)(c) = 0 < 1, \quad \forall t = e, a, b.$$

Hence $x*V*x<\chi_V$, for all $x\in V$. In other words $H\odot K\not\triangleleft_{F-P}V$.

Theorem 3.15. Let \mathcal{F}_1 and \mathcal{F}_2 be two F-polygroups and $f: \mathcal{F}_1 \to \mathcal{F}_2$ be a strong homomorphism. Then $Im(f) <_{F-P} \mathcal{F}_2$.

Definition 3.16. Let $f: \mathcal{F}_1 \to \mathcal{F}_2$ be a strong homomorphism of F-polygroups. Then f is called a zero-invariant iff

$$(x*y)(z) = 0 \Rightarrow f(x*y)(f(z)) = 0, \forall x, y, z \in \mathcal{F}_1.$$

Theorem 3.17. Let $f: \mathcal{F}_1 \to \mathcal{F}_2$ be a homomorphism of F-polygroups. Then

- (i) if $K <_{F-P} \mathcal{F}_2(K \triangleleft_{F-P}^w \mathcal{F}_2)$, then $f^{-1}(K) <_{F-P} \mathcal{F}_1$, $(f^{-1}(K) \triangleleft_{F-P}^w \mathcal{F}_1)$,
- (ii) if f is strong (onto and zero-invariant) and $H <_{F-P} \mathcal{F}_1(H \lhd_{F-P}^w \mathcal{F}_1)$, then $f(H) <_{F-P} \mathcal{F}_2(f(H) \lhd_{F-P}^w \mathcal{F}_2)$.

Corollary 3.18. Let $f: \mathcal{F}_1 \to \mathcal{F}_2$ be a homomorphism of F-polygroups, where the identities of \mathcal{F}_1 and \mathcal{F}_2 are of degree 1. Then

- (i) if $K \triangleleft_{F-P}^{w} \mathcal{F}_2$, then $f^{-1}(K) \triangleleft_{F-P} \mathcal{F}_1$,
- (ii) if f is zero-invariant and onto and $H \triangleleft_{F-P}^w \mathcal{F}_1$, then $f(H) \triangleleft_{F-P} \mathcal{F}_2$.

Remark 3.19. Consider a group G with order greater than 1 and such that $x^2 = e$, $\forall x \in G$. Then as is shown in Examples 2.8 and 3.7, there are two F-polygroup structures on G as follow:

$$(i) (x * y)(z) = e_{\alpha}(xyz), \quad \forall \ x, y, z \in G$$

$$(ii) (x *' y)(z) = \begin{cases} e_1(xyz) & \text{if } z = e \\ e_{\alpha}(xyz) & \text{if } z \neq e, \end{cases}$$
where α is a fixed element in $(0,1)$ and α

where α is a fixed element in (0,1), and e_{α}, e_{1} are fuzzy points in G.

Now let $f:(G,*)\to (G,*')$ be the identity map. Then $f^{-1}(\{e\}) \not \triangleleft_{F-P}(G,*)$, while $\{e\} \triangleleft_{F-P}(G,*')$.

Question 3.20. Is the following statement true?

Let $\mathcal{F}_1, \mathcal{F}_2$ be two arbitrary F-polygroups. If $f: \mathcal{F}_1 \to \mathcal{F}_2$ is a zero-invariant and onto, then the homomorphic image of a normal F-subpolygroup is also normal F-subpolygroup.

REFERENCES

- G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, RI, 1984.
- 2. S.D. Comer, Integral relation algebras via pseudogroups, Not, Am. Math. Soc. 23:A-659, 1976.
- S.D. Comer, Multivalued loops geometries, and algebraic logic, Houston J. Math. 2(3):373-380, 1976.
- 4. S.D. Comer, Combinatorial aspects of relations, Alg. Univ. 18:77-94, 1984.
- 5. M. Dresher and O. Ore, Theory of multigroup, Am. J. Math. 60:705-733, 1938.
- J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18:145-174, 1967.
- 7. S. Ioulidis, Polygroupes et certaines de leurs proprietes, Bull. Greek. Math. Soc. 22:95-104, 1981.
- 8. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35:512-517, 1971.
- 9. L.A. Zadeh, Fuzzy sets, Inf. Contr. 8:353-388, 1965.
- 10. M.M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and fuzzy subpolygroups, J. Fuzzy Math. 3(1):1-15, 1995.
- M.M. Zahedi and A. Hasankhani, Fpolygroups (I), J. Fuzzy Math., 4(3): 533-548 (1996).
- M.M. Zahedi and A. Hasankhani, F-polygroups (II), J. Information Sci., 89: 225-243 (1996).