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Abstract

In this note by considering the notions of F-i)olygroups, the product of F-polygroups, F-
subpolygroups and (weak) normal F-subpolygroups two questions are given. Then by an example
it is shown that the answer of one of the questions (posed in the paper [12]) is in general negative.
In other words, the product of two normal F-subpolygroups need not be normal.
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1. Introduction and Preliminaries

Zadeh in 1965 [9] introduced the notion of
fuzzy subsets of a nonempty set A as a func-
tion from A to [0,1]. Rosenfeld in 1971 [8]
defined fuzzy subgroups and obtained some
basic results. A polygroup is a completely
regular, reversible-in-itself multigroup in the
sense of Dresher and Ore [5]. These systems
occur naturally in the study of algebraic logic
[2,3]. IToulidis in 1981 [7] studied the concept
of polygroup, which is a generalization of the
concept of ordinary group. Zahedi, Bolurian,
and Hasankhani in 1995 [10] introduced the
concept of a fuzzy subpolygroup, which is a
generalization of the concept of a fuzzy sub-
group. Zahedi and Hasankhani [11] defined
the notion of F-polygroup, which is a gener-
alization of polygroups.

Definition 1.1. Let A # 0 and “0” be a
function from A X A to P*(A) = P(A)\{0}.
Then 70" is called a hyperoperation on A.

Definition 1.2. If X,Y € P*(A), then we
define X oY as:

XoY = U zoy.
{(z.y)eX XY

Notation. Let 70" be a hyperoperation on
A and a € A, X € P*(A). Then by aoX and
Xoa we mean {a}oX and Xo{a} respectively.

Definition 1.3 (see [2,3,6,7]). Let "0” be a
hyperoperation on H. Then (H,o0) is called a
polygroup or quasi-canonical hypergroup iff

(i) zo(yoz) = (zoy)oz Y z,y,z€ H,

(i7) There exists an element e € H such
that

roe = eor = {z}, Va2 € H.

(e is called the identity element of H.),
(vi2) for each z € H, there exists a unique
element z’ € H such that

I
e € zoz' Nz'ozx.

(z' is called the inverse of z and is denoted by
1),

(iv) z € zoy = z € zoy~
Vr,y,z€ H.

Definition 1.4. [9]. Let X be a set. A
fuzzy subset of X is a function p : X — [0,1].

Remark 1.5. Throughout this note [ is
the unit interval [0,1] C R, and I is the set
of all fuzzy subsets of A. If 4 € I4, then by
supp(p) we mean the set {z € A : u(z) # 0}.
Let p,n € I4. Then u < niff u(z) < n(z), for
all z € A.

Definition 1.6. Let u,7n and p, € I4
where a is in the index set A. We define the

fuzzy subsets p N7, puUn, ﬂ Lo and U to
aEAN a€A

V= y € z7%0z,
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as follows:

(4) (rnim)(z) = min{u(z), n(z)},
(i) (U n)(2) = max{u(z), n(2)},
(121) ([ pa)(z) = inf pa(z),
agh
(iv) ( U po)(z) = sup polz), forall z € A.

Deﬁnltlon 1.7. Let f A — B be a func-
tion and pu € I4, 5 € IB. Then the functions
f(p) and f~'(n) which belong, respectively,
to I8 and I4 are defined as follows:

(i

sup u(a) if fTHbB)# 0

fu)(b) = { eermi®) .
0

otherwise
forall be B,
(i6) £~ (n)(@) = n(f(a)), for all a € A.
Definition 1.8. Let a € A,t € I. Then
by a fuzzy point a; of A we mean the fuzzy
subset of A given below:

if r=a

(2)=1{ ¢
4\T) =19 0 otherwise

2. F-polygroups

For any subset A of X, we let x4 denotes
the characteristic function of A.

Definition 2.1. Let A # 0 and I =
I4\{0}. Then

(¢) by an F-hyperoperstion "+” on A we
mean a function from A x A to I, in other
words for any a,b € A,a * b is a non-empty
fuzzy subset of A.

(13) if w,n € IA, then p+n € IA is defined
by

L = U T *7.
c€supp(u),yEsupp(n)

Notation 2.2. Let p € IA,B,C € P*(A)
and ¢ € A. Then

(1) axp and pxa denote x,, *p and pxx,,
respectively,

(i1) axB,Bxa,uxB, Bxp and B+C denote
X(a) * X5+ X5 * X (ays B * Xp> Xp *#h and Xp * X
respectively.

Definition 2.3. Let ” *” be an F-
hyperoperation on the non-empty set A. Then
(A, *) is caled an F-polygroupoid.

Definition 2.4. Let (H,*) be an F-
polygroupoid. Then (H,x) is called a semi-
F-polygroup iff

x(y*xz)=(zxy)*z, Vz,y,z€ H.

Definition 2.5. Let F be a non-empty
set. Then (F,*)is caﬂed a non-reversible F-
polygroup iff

(z) (F,*)is a semi-F-polygroup,

(i7) there exists an element ex € F such
that

z € supp(z xerNer*z), VZ € F

(In this case we say that ex is an F-identity
element of F.), '

(v37) for each z € F, there exists a unique
element z’ € F such that

er € supp(z *z' Nz’ * ).

(z'is called the F-inverse of z and it is denoted
by =7 L) _

Deﬁntlon 2.6. Let (F,+) be a non-
reversible F-polygroup. Then (F,*) is an F-
polygroup iff

z € supp(z *y) = <z € supp(z* y}l)
= y€ supp(z';-l *2Z),
Ve,y,z € F.

(This property is called the F-reversibility of
F with respect to” % 7.)

When there is no ambiguity, for simplicity
of notation we use e and r~! instead of ef and
z}l respectively.

Example 2.7. Let ¥ = {a,b}. Then the
following table denotes an F-polygroup struc-
ture on F.

a b
a bl a b
2| 57:0 | 0603
bl e b T e b
0°03 | 0700

Example 2.8. Let o be an arbitrary el-
ement of I\{0} and G be a group such that
r? =e, VYV z € G. Then it is easily seen that

ML

the F-hyperoperation ”+” which is defined as
(z*y)(z) =ealzyz) V1,9,2€G

induces an F-polygroup structure on G, where
e, 1s a fuzzy point of G.
Throughout this note 7 will denote an F-

polygroup with F-hyperoperation ”*” and e
will denote the F-identity of F.
Remark 2.9. Let uy,pu; € I7. Then we

have
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(2) If p1(t) >0 (p2(t) > 0), then
txpy Sprrpe (prrt < pgxpg).
In particular,
e*ugg(z*z—l)*pg, VrelkF.
(¢2) If py < po, then
Txpy <THuy, VYzelF.

H1* T < po % T,

Lemma 2.10. Let u € I7,z € F. Then

supp(p* z) = U supp(t * z)
t€supp(u)
and
supp(z * p) = U supp(z * t).
tEsupp(u)

Theorem 2.11. (2) Let (A4,0) be a poly-
group. Then (A, ) is an F-polygroup where

THY= Xpoyr VI, Y€ A

(* is called the F-hyperoperation induced by
7’077.)

(i7) Let (A,*) be an F-polygroup and
supp(z xe) = supp(exz) = {z} Vz € A. Then
(A,©) is a polygroup where

zQy=supp(z*y), Vz,y€A

(© is called the hyperoperation extracted from

*.)
Definition 2.12. If

(zxe)(z)=(exz)(z)=1, Vz€F,

then we say e is of degree 1.

Corollary 2.13. Let (A,0) be a poly-
group. Then the F-identity of F-polygroup
(A, ), which is defined in Theorem 2.11 is of
degree 1.

Theorem 2.14.
polygroup. Then

(z) e7! = e and e is unique. Also supp(e *
e) = {e},

(i) ()l =z, VzeF,

Let (F,*) be an F-

(247) U T ok Qg = Oy ¥ g =
z€supp(p1)
U sy Vupmer?

yEsupp(uz)
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(1v) (p1 * po) * p3 = py * (U2 * pa),

Vi, pa,ps € I

Definition 2.15. Let F;,F, be two F-
polygroups and f : F; — F3 be a function
such that f(e1) = e2. Then

(¢) f is called a homomorphism iff

flzxy) < f(z)* fly), Yo,y€F

(22) f is called a strong homomorphism iff

flzxy)=f(z)* fly), Va,yeR

3. The normal F-subpolygroups

Definition 3.1. Let ) # H C F. Then H
is called an F-subpolygroup iff

(1)ifr € H,thenz™l' € H

(e2) supp(z +y) C H, Vz,ye H.

In this case we write: H <,_, F.

Note that condition (22) of above definition
is equivalent tor xy < x,, Vz,y € H.

Example 3.2. Let 7 = {e,a,b}. Then the
following table shows an F-polygroup struc-
ture on F.

* e a b
el ¢ ableablead
1)6:0 | 00100 | 020°1]
ale 2 bleaecbleadbd
00126 1 0°3°0 | 10717
pleabieabieatd
000 1 [ 10107 § 82021

Now let H = {a}. Then (H,+) is an
F-polygroup, where ”+'” is the restriction of
7" to H x H. However H is not an F-
subpolygroup of F, because a™! = b in F and
b¢g H.

Lemma 3.3. Let § # H C F. Then
H <._, F if and only if supp(z * y~!) C
H, Vz,ye H.

Corollary 3.4. {e} <,_, F.

Definition 3.5. Let H <,_, F. Then

(i) H is sald to be weak normal in
F(H <y , F)iff

cxH*2 ' <x,, VzeF, (1)

(2¢) H is said to be normal in F (H<,_, F)
iff
z*H*x*lsz, YzeF.

Note that (1) is equivalent to:

supp(c+ Hx2 \YC H, VzeF.



The following example shows a weak normal
F-subpolygroup which is not normal.

Example 3.6. Consider the Example 2.7.
Let H = F. Then it is obvious that H 4%_p
F. Since

(z+xH+z7')(a)<07<1, Vz,a€ F.

we conclude that H 4p_pF.

Now we give an example of a normal F-
subpolygroup.

Example 3.7. Consider a group G with
order greater than 1 and z? = e, Vz € G. Let

a € (0,1). Define the hyperoperation ”+” on
G by

e u)(2) = ei(zyz) if z=e
(z + y)( )—-{ eloe) if 2 e

where ey, e, are fuzzy points of G. After some
manipulation it can be seen that (G, *) is an
F-polygroup, ef = e and z}l =z,Vzedgd.
Now let H = {e}. Then by Corollary 3.4 we
have H <p_p G. And it is not difficult to
check that

cxHxz=xy,, VZEG.

Thus H dp_p G.
Note that in the above example the identity
is not of degree 1, because if z # e, then (z *

e)(z)=a#l.
Theorem 3.8. Let e € F be of degree 1.
Then
NQ%-P}- if Ndp_pF.

Lemma 3.9. Let u € I7. Then

Txp*xY = U Txtxy, VYzeF.
tesupp(p)
Lemma 3.10. let n € [N and
w,ay,-,a, € F. If w € supp(ay *---*ay),

then w™! € supp(a;® *---*aj').
Theorem 3.11. Let H,K <,_, F and
HOK = U supp(z * y).
zeH, yeK
Then

(VHOK <,_p Fifandonlyif HOK =
KOoH,
(i0)if K 94¥_p F,then HO K <p_p F,
(i4i) if H,K <4%_p F, then HO K q¥_p F.
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Corollary 3.12. Let e € F be of degree 1
and H,K Q%_p F. Then HO K dp_p F.

Question 3.13. [12]. If H, K dp_p F, is
HOKAQp_p F?

Answer: the following example shows that
the answer is not affirmative in general.

Example 3.14. Let V = {e,a,b,c} be the
Klein 4-group and o € (0,1). Define the F-

hyperoperation ”*” on V by
] _ ) ea(zyz) if z=¢
(z*y)(z) = { e1{zyz) if z#£¢

where e; and e, are fuzzy points of V. Now
it is easy to check that

supp(z x y) = _{xy}, Ve,yeV. (2)

Then by using (2) and some manipulations
it can be seen that (V,x) is an Abelian F-
polygroup and also ey = e and :1:;1 = z,
Ve € V. Now let H = {e,a} and K = {e, b}.
Then from (2) and some calculations we get
that H K <p_p F. Now we show that
H,K<ap_pV. Let z € V be arbitrary. Then
we have:

supp(z x e x ¢) = supp(z * z) = {e},
and

supp(zxaxz) = supp(z*z=*a)

= supp(e*a)
= {a}.
Therefore supp(z x H xz) = {e,a}. Now
(z+ H xz)(e)

= maz{(z+xexz)(e),(z*xax*xz)(e)}

maz{(e*e)(e),(exa)(e)}
= maz{ei(e), ei(a)}
b=t 1,

and

(z « H xz)(a)
= maz{(zxexz)(a),(zxax*z)(a)}
= maz{(e=*e)(a),(exa)(a)}
maz{e1(a),ei(e)}
= 1.

il

Thus
VeV,

zxH*xz=x,,



which means that H dp.p V. Similarly
K<p_pV. Now we show that HOK Ap_pV.
To do this first we prove that H ©® K = V and
then we show that (z * V x z)(c) < x, (¢), for
all z € V. We have:

HGOK = supp(ex*e)U supp(eb)
supp(a * e) U supp(a * b)

= {eju{t}u{atu{c}
=V,

-

and
(zxc*xz)(c)=(exc)(c)=a < 1,
and

(zxt*z)(c)=(exe)(c)=0< 1, Vt=e,a,b.

Hence z + V xz < x,, for all z € V. In other
words H O K Adr_pV.

Theorem 3.15. Let F; and F; be two F-
polygroups and f : F; — F; be a strong ho-
momorphism. Then Im(f) <,._, Fa.

Definition 3.16. Let f: F; — F3 be a
strong homomorphism of F-polygroups. Then
f is called a zero-invariant iff

(zxy)(z) = 0 = fz*y)(f(2)) =0, Vz,y,2 € F1.

Theorem 3.17. Let f : 71 — F; be a
homomorphism of F-polygroups. Then

() if K <p-p Fo(K <a¥%_p F2), then
FUE) <pp Fi, (FHE) <¥_p 1),

(#1) if f is strong (onto and zero-invariant)
and H <p_p .7:1(H 4%__13 fl), then
f(H) <p_p F2(f(H) <¥_p F2).

Corollary 3.18. Let f : F; — F; be
a homomorphism of F-polygroups, where the
identities of F; and F; are of degree 1. Then

(i) if K Q¥_p Fa, then f"HK) dp_p Fy,

(¢1) if f is zero-invariant and onto and
H <]11§J~_P Fi, then f(H) SfF-p Fo.

Remark 3.19. Consider a group G with
order greater than 1 and such that z2 = e,
¥ z € G. Then as is shown in Examples 2.8
and 3.7, there are two F-polygroup structures
on G as follow:

(i) (z xy)(2) = ex(zy2), Yz,y,2€ G,
. . | ei(zyz) if z=e

(i6) (2 #' y)(2) = { ot
where « is a fixed element in (0,1), and e,, e;
are fuzzy points in G.
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Now let f : (G,*) — (G,#') be the iden-
tity map. Then f~!({e}) Ar_p(G,*), While
{e} ap-p (G, ¥).

Question 3.20. Is the following statement
true? \

Let Fy,F, be two arbitrary F-polygroups.
If f:F — F,is a zero-invariant and onto,
then the homomorphic image of a normal F-
subpolygroup is also normal F-subpolygroup.
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