ON FUZZY VIETORIES TOPOLOGY JANG HYUN RYOU, KUL HUR AND JU RAN MOON Dept. of Mathematical Science, Wonkwang University Iksan City, Chunbuk 570–749, South Korea kulhur@wonnms.wonkwang.ac.kr Abstract: We introduce the concept of a fuzzy vietories topology and we obtain its fundamental properties. #### 1. Preliminaries. Let I = [0, 1]. For a set X, Let I^X be the collection of all the mappings from X into I. Each member of I^X is called a fuzzy set in X (cf.(6)). Let $F_p(X)$ denote the collection of all the fuzzy points in a set X (cf.(1)) **Definition 1.1[4].** A fuzzy point x_{λ} in a set X is said to be $quasi-coincident(q-coincident, in shorts) with a fuzzy set A in X, denoted by <math>x_{\lambda}qA$, if $\Lambda + A^{c}(x) > 1$ or $\lambda + A(x) > 1$. A fuzzy set A is said to be q-coincident with a fuzzy set B, denoted by AqB, if there exists an $x \in X$ such that $A(x) > B^{c}(x)$ or A(x) + B(x) > 1. In this case, we say that A and B are q-coincident. **Definition 1.2[1].** A subfamily \mathcal{T} of I^X is called a *fuzzy topology* on X if \mathcal{T} satisfies the following conditions: - (i) $\emptyset, X \in \mathcal{T}$, - (ii) If $\{U_{\alpha} : \alpha \in \Lambda\} \subset \mathcal{T}$, the $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in \mathcal{T}$, where Λ is an index set, - (iii) If $A, B \in \mathcal{T}$, then $A \cap B \in \mathcal{T}$. Each member of \mathcal{T} is called a fuzzy open set in X and its complement a fuzzy closed set in X. The pair (X, \mathcal{T}) is called a fuzzy topological space(fts, in short) **Theorem 1,A[4].** $A \subset B$ if and only if A and B^c are not q-coincident(denoted by $A\overline{q}B^c$). In particular, $x_{\lambda} \in A$ if and only if $x_{\lambda}\overline{q}A$. **Definition 1.3[4].** For a fuzzy set A in a fts (X, \mathcal{T}) , the *closure* \overline{A} and the *interior*, $\overset{\circ}{A}$ of A are defined respectively ,as $$\overline{A} = \bigcap \{B : A \subset B, B^c \in \mathcal{T}\}$$ and $\mathring{A} = \bigcup \{B : B \subset A, B \in \mathcal{T}\}.$ **Theorem 1.B[4].** Let X be a fts and let $A \in I^X$. Then: - (a) $X_{\lambda} \in A$ if and only if X_{λ} has a neighborhood contained in A. - (b) $x_{\lambda} \in \overline{A}$ if and only if for each q-neighborhood V of x_{λ} , VqA. **Theorem 1.C[4].** Let X be a fts and let $A \in I^X$. Then, $$\overset{\circ}{A}=(\overline{A^c})^c$$ and $\overline{A}=((\overset{\circ}{A^c}))^c$. **Definition 1.4[4].** A fts X is said to be: - (a) \mathcal{T}_0 , if for any two distinct fuzzy points x_{λ} and y_{μ} : - (Case 1) When $x \neq y$, either x_{λ} has an open nbd which is not q-conincident with y_{μ} or y_{μ} has an open nbd which is not q-coincident with x_{λ} . - (Case 2) When x = y and $\lambda < \mu(\text{say})$, then there exists a q-nbd V of y_{μ} which is not q-coincident with x_{λ} . - (b) \mathcal{T}_1 , if for any two distinct fuzzy points x_{λ} and y_{μ} : - (Case 1) When $x \neq y$, x_{λ} has an open nbd which is not q-coincident with y_{μ} and y_{μ} has an open nbd which is not q-coincident with x_{λ} . - (Case 2) When x = y, and $\lambda < \mu(\text{say})$, then there exists a q-nbd V of y_{μ} such that $x_{\lambda}qV$. - (c) $\mathcal{T}_2(Hausdorff)$ if for any two distinct fuzzy points x_{λ} and y_{μ} : - (Case 1) When $x \neq y$, then x_{λ} and y_{μ} have open nbds which are not q-coincident. - (Case 2) When x=y and $\lambda < \mu(\text{say})$, then y_{μ} has an open q-nbd V and x_{λ} has an open nbd U such that $V\overline{q}U$. **Theorem 1.D[2].** A fts X is \mathcal{T}_1 if and only if every singlton set is closed in X. # 2. Definition of a fuzzy Vietories topology **Notations.** Let X be a fts. then: - (a) $2^X = \{E : E \text{ is nonempty and closed in } X\}.$ - (b) $2^A = \{E \in 2^X : E \subset A\}$, where $A \in I^X$. **Proposition 2.1.** Let X be a fts and let $A \in I^X$. Then $$2^X - 2^{A^c} = \{ E \in 2^X : EqA \}.$$ #### ON FUZZY VIETORIES TOPOLOGY **Lemma 2.2.** Let X be a fts and let \mathfrak{T} be a collection of all sets 2^G and of all sets $2^X - 2^{G^c}$, where G is a fuzzy open set in X. Let \mathfrak{B}_e be the collection of all finite intersections of membrs of \mathfrak{T} . Then for each $\mathbb{B} \in \mathfrak{B}_e$, $$\mathbb{B} = \{ E \in 2^X : E \subset A_0, EqA_i \text{ for each } i = 1, \dots, n \},\$$ where A_i is open in X for each $i=0,1,\dots,n$. In this case, \mathbb{B} will be denoted as $< A_0, A_1, \dots, A_n > e$. **Theorem 2.3.** Let (X, \mathcal{T}) be a fts and let \mathfrak{T} be a collection of all sets 2^G and of all set $2^X - 2^{G^c}$, where G is a fuzzy open set in X. Then there is a unique fuzzy topology \mathcal{T}_e on 2^X such that \mathfrak{T} is a subbase for \mathcal{T}_e . In fact, \mathfrak{B}_e is a base for \mathcal{T}_e , and \mathcal{T}_e an ordinary topology on 2^X . **Definition 2.4.** Let (X, \mathcal{T}) be a fts. Then the **fuzzy Vietories**(or *finite*)topology \mathcal{T}_v on 2^X is the generated by the collection of the forms $\langle U_1, \cdots, U_n \rangle_v$ with U_1, \cdots, U_n fuzzy open sets in X, where $\langle U_1, \cdots, U_n \rangle_v = \{E \in 2^X : E \subset \bigcup_{i=1}^n U_i \text{ and } EqU_i \text{ for each } i=1,\cdots,n\}.$ In fact, \mathcal{T}_v is an ordinary topology on 2^X . **Theorem 2.5.** The collection \mathfrak{B}_v of the forms $\langle U_1, \dots, U_n \rangle_v$ with U_1, \dots, U_n fuzzy open sets in X, forms a base for \mathcal{T}_v . **Theorem 2.6.** \mathfrak{B}_e and \mathfrak{B}_v are equivalent. Hence $\mathcal{T}_v = \mathcal{T}_e$. # 3. Fundamental properties. **Proposition 3.1.** Let X be afts. then: (a) $2^{A_0 \cap A_1} = 2^{A_0} \cap 2^{A_1}$ and generally $2^{\bigcap_{\alpha} A_{\alpha}} = \bigcap_{\alpha} 2^{A_{\alpha}}$, where $A_0, A_1, A_{\alpha} \in I^X$. (b) $A \subset B$ if and only if $2^A \subset 2^B$. Hence A = B if and only if $2^A = 2^B$. **Lemma 3.2.** Let (X, \mathcal{T}) be a fuzzy \mathcal{T}_1 -space and let $A \in I^X$. Then: (a) If $$A(x) < 1$$ for each $x \in X$, then $\overline{2^A} = 2^{\overline{A}}$. $$(b) \stackrel{\circ}{\widehat{2^A}} = 2^{\stackrel{\circ}{A}}$$ # JANG HYUN RYOU, KUL HUR AND JU RAN MOON **Theorem 3.4.** Let (X, \mathcal{T}) be fuzzy \mathcal{T}_3 -space, and $A \in I^X$. Then the set $\{E \in 2^X : A \subset E\}$ is closed in $(2^X, \mathcal{T}_v)$. **Theorem 3.5.** Let (X, \mathcal{T}) be a fts. Then: - (a) $(2^X, \mathcal{T}_v)$ is always \mathcal{T}_0 . - (b) If X is \mathcal{T}_1 , then 2^X is \mathcal{T}_1 . But the converse is false. **Example 3.6.** Let X be a finite set containing more than two points. Let the topology \mathcal{T} on X be the fuzzy trivial topology. Then $2^X = \{X\}$. So 2^X is \mathcal{T}_1 . But (X, \mathcal{T}) is not \mathcal{T}_1 . **Definition 3.7.** A fuzzy set A in a fts X is said to be *dense* in X if $\overline{A} = X$. In particular, A is said to be *countably dense* in X if A is dense in X and S(A) is countable. If X has a fuzzy countable dense set, we say that X is *separable*. **Theorem 3.8.** Let $\mathfrak{F}(X)$ be the family of all the fuzzy finite sets in a fuzzy \mathcal{T}_1 -space X. Then $\mathfrak{F}(X)$ is dense in $(2^X, \mathcal{T}_v)$. **Theorem 3.9.** X is separable if and only if 2^X is separable. # REFERENCES - 1. C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24 (1968), 182-190. - 2. S.Ganduly and Saha, On separation axiom and \mathcal{T}_i -fuzzy continuity, Fuzzy sets and systems 16 (1989), 265–275. - 3. K.Kuratowski, Topology Vol.1, Academic Press (1960), 160-163. - 4. Pu pao-Ming and Liu Ying Ming, Fuzzy topology 1. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J.Math.Anal.Appl. 76 (1980), 571-599. - 5. C.K.Wang, Fuzzy points and local properties of fuzzy topology, J.Math.Anal.Appl. 46 (1974), 316-328. - 6. L.A.Zadeh, *Fuzzy sets*, Inform and control 8 (1965), 338–353.