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Abstract

In this paper, we introduce the concepts of intuitionistic fuzzy points and intuitionistic fuzzy
neighborhoods. We investigate properties of continuous, open and closed maps in the intuitionistic
fuzzy topological spaces, and show that the category of Chang’s fuzzy topological spaces is a bireflective
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1. Introduction

As a generalization of fuzzy sets, the concepts of in-
tuitionistic fuzzy sets was introduced by Atanassov
[1]. Recently, Coker and his colleagues [3,4,5] intro-
duced intuitionistic fuzzy topological spaces using
intuitionistic fuzzy sets.

In this paper, we introduce the concepts of intu-
itionistic fuzzy points and intuitionistic fuzzy neigh-
borhoods. We investigate properties continuous,
open and closed maps in the intuitionistic fuzzy
topological spaces. And we show that the category
of Chang’s fuzzy topological spaces is a bireflective
full subcategory of that of intuitionistic fuzzy topo-
logical spaces.

2. Preliminaries

Let X be a nonempty set. An intuilionistic fuzzy
set (IFS for short) A is an ordered pair

A= (na,va)

where the functions pg : X - Tand y4 : X — 1
denote the degree of membership and the degree of
nonmembership respectively, and pq +v4 < 1.

Obviously every fuzzy set ug on X is an IFS of
the form (p4,1 — p4).

Definition 2.1([1]) Let A = (pa,v4) and B =
(1¢8,7vp) be IFSs on X. Then

(1) ACBiff pg < pp and y4 > 5.

(2) A=Biff AC Band BC A.

(3) A°= (74, pa)-
(4) ANB = (uaApp,vaVyB)-
(5) AUB = (uaV 1,74 AB).
(6) 0. =(0,1) and 1. = (i,0).
Let f be a map from a set X to a set Y. Let

A = (pa,74) be an IFS of X and B = (up,7yp) an
IFS of Y. Then f~!(B) is an IFS of X defined by

4B = (F (), [ (18))
and f(A) is an IFS of Y defined by

f(A) = (f(pa), 1 = F(L~va)).
For a map f: X — Y, the following results are
well-known:
(1) If A; C A then f(A;) C f(As).
(2) If B, C B, then f(By) C f~(B,).
() AC fH(f(A)).
(4) If f is one-to-one, then A = f~1(f(A)).
() B2 f(f71(B))-
(6) If f is onto, then B = f(f~Y(B)).
(7) f1(0.)=0..
(&) f'(1.) =1..
(9) f(0.) =0..
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(10) f(1.) = 1. if f is onto.
(11) f(A)° C f(A°) if f is onto.
(12) f~Y(B) = f1(B°).

Definition 2.2([3]) An intuitionistic fuzzy topol-
ogy (IFT for short) on X is a family 7 of IFSs in
X which satisfies the following properties:

(1) 0.,1.€T.
(2) If Aj,A € T, then A\NA, €T.
(3) If A; €T for each ¢, then | JA; € T.

The pair (X,T) is called an intuitionistic fuzzy
topological space (IFTS for short).

Let (X, T) be an IFTS. Then any member of T is
called intuitionistic fuzzy open set (IFOS for short)

of X and the complement intuitionistic fuzzy closed
set (IFCS for short).

Definition 2.3([3]) Let (X,7) be an IFTS and
A an IFS in X. Then the fuzzy closure is defined
by

cd(A)={F|ACFFeT}

and the fuzzy interior is defined by
int(A) =U{G|AD2G,GeT}

Theorem 2.4({3]) For an IFS A of an IFTS
(X,T), we have:

(1) int(A)° = cl(A°).
(2) cl(A)¢ = int{A°).

3. Intuitionistic fuzzy neighborhoods

We are going to introduce the concepts of intuition-
istic fuzzy points and intuitionistic fuzzy neighbor-
hoods.

Definition 3.1 Let o, € [0,1] and a + 3 < 1.
An intuitionistic fuzzy point (IFP for short) z(, g
of X is an IFS of X defined by

if y=u,
if y#u.

In this case, = is called the support of T(ap and
a and § are called the value and the nonvalue of
Z(a,5), respectively. An IFP z(, 4 is said to belong
to an IFS A = (p4,74) of X, denoted by z(, 45 € 4,
if o <pa(z) and 8 > v4(x).

Clearly an intuitionistic fuzzy point can be repre-
sented by an ordered pair of fuzzy points as follows:

l’(a,ﬁ)(y) = { 23:1'8))

m(aﬁ) = (za, 1 — .’Elﬁﬂ).

Theorem 3.2 Let A = (p4,v4) be an IFS of
X. Then xap € A if and only if zo € gy and
T1-3 €1 — 4.

32

>
o

Proof. Let 2,4 € A & o < pu(z) and ¢4
v4(z) & a < pa(z) and 1 -8 < 1 — ()
o € Aand z1_g €1 — 4.

Theorem 3.3 Let A = (p4,74) and B =
(uB,7v8) be IFSs of X. Then A C B if and only
if Ta,p) € A implies (o5 € B for any IFP z(,
m X

Proof. Let A C B and x5 € A. Then a <
pa(z) < pp(z) and B > ya(z) > ~vp(z). Thus
T(a,3) € B. Conversely, take any £ € X. Let o =
pa(z) and B = y4(x). Then x(,4 is an IFP in X
and z(4,6) € A. By hypothesis, x(,3 € B. Thus
pa(r) = a < pp(z) and ya(z) = 8 > yp(x). Hence
ACB.

Theorem 3.4 Let A= (14,7v4) be an IFS of X.
Then A = U{$(a,ﬂ) | T(a,p) € A}

Proof. Since z(,g) = (%4, 1 — 21-3),

U{Z(ap) | T(ap) € A} =
(Mza | Za € pal, N{L =21 5|15 €1 —74}).

Clearly \/{zs | Za € pta} = pa. On the other hand
V{zi—g|z1-s €1 -4} =1 — v4 and hence

L Vizwg | zipe1-qa)
= ANMl-ziglzigel—q4}.

YA

Hence | {z (0,9 | Z(a,8) € A} = (14,74) = A.

Definition 3.5 Let z(, 5 be an IFP of an IFTS
(X,T). AnIFS A of X is called an intuitionistic
Juzzy neighborhood (IFN for short) of x(, s if there
is an IFOS B in X such that z(, g, € B C A.

Theorem 3.6 Let (X, T) be an IFTS. Then an
IFS A of X is an IFOS if and only if A is an IFN
of T(a,5) for every IFP (. 4 € A.

Proof. Let A be an IFOS of X. Clearly A is an
IFN of any z(, 45 € A. Conversely, let T(a,3) € A
Since A is an IFN of (4 ), there is an IFOS B,
in X such that Tap € B C A. So we have

L(ee,g)

A = WZ@p | Z@ap € A}
- U{BI(..m Im(a,ﬁ) € A} c A

and hence A = (J{B,,,,, | T3 € A}. Since each
B, 1s an IFOS, A is an IFOS.
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4. Continuous maps in the intuitionistic
fuzzy topological spaces

Definition 4.1([3]) Let (X, 7) and (Y,U) be IF-
STs. Then amap [ : X — Y is said to be

(1) continuous if f~1(B) is an IFOS of X for each
IFOS B of Y, or equivalently, f~!(B) is an
IFCS of X for each IFCS B of Y,

(2) openif f(A)is an IFOS of Y for each IFOS A
of X,

(3) closedif f(A)is an IFCS of Y for each IFCS A
of X,

(4) a homeomorphism if f is bijective, continuous
and open.

Theorem 4.2 Let f : (X, T) — (Y,U) be a map.
Then [ is continuous if and only if for any IFP
T(ap tn X and any IFN B of f(x(.g), there is an
IFN A of (o) such that x, g € A and f(A) C B.

Proof. Let z(,3 be any IFP in X and B any
IFN of f(2(a). Then there is an IFOS C in Y
such that f(x(,4) € C C B. Since f is continuous,
f YC) is an IFOS and

Tap) = S [(Z@p) € FHC) C fI(B).

Put A = f~1(C). Then A is an IFN of T(q,3) and

ag € AC f’l(B). Thus z(, 5 € A and f(A) C
f f Y(B)

Conversely, let B be any IFOS of Y. If f}(B) =
0., then it is obvious. Suppose z(5 € f'(B).
Then B is an IFN of f(x(,3)). By hypothesis, there
isanIFN A, of z(q ) such that x(q 4 € A, and

fA Tomn) C B Slnce Aqz,, is an IFN of z(, g), there
is an IFOS (%, in X such that

L(,3) € CC( g = I(.. 4 = f lf(Am(,,,,) = I(B)
So we have
STHEY = o | 2as € FHB)}

U{C‘T(n..i) ! T(a,p) € fﬁl(B)}
fUB)

= U{CI(“./;) ' Z(a,3) € fﬁl(B)}
(B) is an IFOS of X. Therefore f is con-

NN

and hence f~1(B)
Thus f~!
tinuous.

Theorern 4.3 Let f : (X, T) — (Y,U) be a map.
Then the following statements are equivalent:

(n f
(2) f(cl(A) Ccl(f(A)) for each IFS A of X.
(3) cl(f H(B)) C f~Y(cl(B)) for each IFS B of Y.

15 a continuous map.

(4) f
Y.

Y(int(B)) C int(f~Y(B)) for each IFS B of

Proof. We already know that (1) & (3) <
(4)(See {3]). (1) = (2) Let f be a continuous map
and A any IFS of X. Since cl(f(A)) is an IFCS of
Y, /7Y cl(f(A))) is an IFCS of X. Thus

c(4) € cl(ff(A)
C (/NS (A) = F((f(A))).

Hence

F@(A) € FFHAF(A)) C el(F(A)).
(2) = (3) Let B be any IFS of Y. By (2),

fE(fH(B)) Ce(ff1(B)) C cl(B).
Thus

cl(f7H(B)) C ST (ST (BY) € M (U(BY).

The conditions in Theorem 4.3 are not equivalent
to the condition that int(f(A)) C f(int(A)) for each
IFS A of X. This is shown by the following two
examples.

Example 4.4 Let X = {z,y} and A and B be
IFSs of X defined as

A(z) = (0.3,0.4),

Ay) = (0.3,0.4);

and
B(z) = (0.3,04), B(y)=(0,1).

Define 7y = {0.,1.,4} and 73 = {0.,1.,B}.
Then clearly 7, and 75 are IFTs on X. Consider
the constant map f : (X,7;) — (X,7:) defined
by f(z) = z and f(y) = z. Then f~1(0.) = 0.,
f(1.) = 1. and f}B) = A are IFOSs of
(X, Ti) and hence f is continuous. But int(f(B)) =
int(B) = B in (X, 73) and f(int(B)) = f(0.) = 0~
in (X, 7). Thus int(f(B)) € f(int(B)).

Example 4.5 Let X = {z,y} and A be an IFS
of X defined as

A(z) = (04,0.2), A(y) = (1,0).

Define 77 = {0.,1.} and 73 = {0..,1., A}. Then
clearly 7; and 73 are IFTs on X. Consider the
constant map f : (X,7i) — (X,T:) defined by
f(z) = z and f(y) = x. Then for each IFS B of
(X, T0), f(B)(y) = (0,1). Thus int(f(B)) = 0. C
f(int(B)). But f!(A) is not an IFOS in (X, T})
and hence f is not continuous.

However, we obtain the following theorem for a
bijection f.

Theorem 4.6 Let f: (X, T) — (Y,U) be a bijec-
tion. Then the following statements are equivalent:
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(1) f is a conlinuous map.

(2) f(cl(A)) C cl(f(A)) for each IFS A of X.

(3) cl(f~Y(B)) C fY(cl(B)) for each IFS B of Y.
(4) {/‘1(int(3)) C int(fY(B)) for each IFS B of

(5) int(f(A)) C f(int(A)) for each IFS A of X.

Proof. By Theorem 4.3, it suffices to show that
(4) is equivalent to (5). Let A be any IFS of X.
Then f(A) is an IFS of Y. So f~'(int(f(A4))) <
int(f1f(A)). Since f is one-to-one,

J7Hint(f(A))) C int(f 71 f(A)) = int(A).
Thus ff~!(int(f(A))) C f(int(A)). Since f is onto,
int(f(A)) = ff ' (int(f(4))) C f(int(4)).

Conversely, let B be any IFS of Y. Then f~1(A)
is an IFS of X. Since f is onto,

int(B) = int(ff71(B)) C f(int(f7(B))).
Since f is one-to-one,
JHint(B)) C £ f(int(f~}(B)) = int(f~'(B)).

Hence the theorem follows.

Theorem 4.7 Let { : (X, T) — (Y, U) be a map.
Then the following stalements are equivalent:

(1) f is an open map.

(2) f(int(A)) C int(f(A)) for each IFS A of X.

(3) int(f}(B)) C fYint(B)) for each IFS B of
Y.

Proof. (1) = (2) Let A be any IFS of X. Clearly,
int(A) is an IFOS of X. Since f is an open map,
f(int(A)) is an IFOS in Y. Thus

[(int(A)) = int(f(int(A))) C int(f(A)).

(2) = (3) Let B be any IFS of Y. Then f~!(B)
is an IFS of X. By (2),

Flint(f~1(B)) € int(ff~'(B)) C int(B).
Thus we have
int(f~1(B)) C f~' f(int(f~"(B))) C f~*(int(B)).

(3) = (1) Let A be any IFOS of X. Then
int(A) = A and f(A) is an IFS of Y. By (3),

A = int(A) C int(f 7' f(A)) C £ (int(f(4)))

Hence we have

f(A) C £f7H(int(f(4))) C int(f(A)) C f(A).

Thus f(A) = int(f(A)) and hence f(A) is an IFOS
in Y. Therefore f is an open map.

Theorem 4.8 Let f : (X, T) — (Y,U) be a map.
Then the following statements are equivalent:

(1) f is a closed map.
(2) cl{(f(A)) C f(cl(A)) for each IFS A of X.

Proof. (1) = (2) Let A be any IFS of X. Clearly,
cl(A) is an IFCS in X. Since f is a closed map,
f(cl(A)) is an IFCS in Y. Thus we have

c(F(A)) € cl(f(cl(A))) = f(cl(A)).

(2) = (1) Let A be any IFCS of X. Then cl(A) =
A. By (2),

cl(F(A4)) < f(cl(4)) = f(A) C cI(f(A)).

Thus f(A) = cl(f(A)) and hence f(A) is an IFCS
in Y. Therefore f is a closed map.

The conditions in Theorem 4.8 are not equivalent
to the condition that f~1(cl(B)) C cl(f}(B)) for
each IFS B of Y. This is shown by the following
two examples.

Example 4.9 Let X = {z,y} and A, B and C
be IFSs of X defined as

A(z) =(0.3,0.4), A(y) =(0.3,0.4);

B(z) = (0.3,0.4), B(y) =(0,1);

and

Define 77 = {0..,1., A} and T = {0.,1., B¢, C°}.
Then clearly 7; and 7, are IFTs on X. Consider
the constant map f : (X,77) — (X, T2) defined by
f(z) =z and f(y) = 2. Then f(0.) =0., f(1.) =
C and f(A) = B are IFCSs of (X, 73) and hence f
is a closed map. On the other hand, f~1(cl(A)) =
F'(1.) = 1. in (X, T3) and cl(f~1(A)) = cl(A) =
Ain (X, 7). Thus f~1(cl(A)) Z cl(f1(A)).

Example 4.10 Let X = {z,y} and A be an IFS
of X defined as

Alx) = (0,1), A(y) = (1,0).

Define 71 = {0~,1.} and 73 = {0.,1., A°}. Then
clearly 77 and 7; are IFTs on X. Consider the
constant map f : (X,7;) — (X,7z) defined by
f(z) = z and f(y) = z. Let B be any IFS of Y.
If B(z) = (0,1), then

f7HU(B)) = f7H(A) = 0. C l(f71(B)).
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Suppose B(z) # (0,1). Then f~'(B) # 0. and
hence

JHA(B) €1 =d(f(B)).

But f(1.) = A° (note that f is not onto) is not an
IFCS in (X, 73) and hence f is not a closed map.

However, in case f is a bijection, we have the
following theorem.

Theorem 4.11 Let f : (X, 7)) — (Y,U) be a
bijection. Then the following statements are equiv-
alent:

(1) f is a closed map.
(2) c(f(A)) € f(cl(A)) for each IFS A of X.
(3) f71(c(B)) Ccl(f 1(B)) for each IFS B of Y.

Proof. By Theorem 4.8, it suffices to show that
(2) is equivalent to {3). Let B be any IFS of Y.
Then f~1(B) is an IFS of X. Since f is onto,

cl(B) = c(ffH(B)) C f(e(f(B)).
So f1(cl(B)) C f1f(cl(fY(B))). Since [ is one-

to-one,

FHNB) S SIS HB)) = el(f7H(B)).

Conversely, let A be any IFS of X. Then f(A) is
an IFS of Y. Since f is one-to-one,

FTHEA(f(A))) C el(f 71 f(A4)) = cl(A).
So ff1(cl(f(A))) C f(cl(A)). Since f is onto,
c(f(A)) = [FHcl(f(A))) C flel(A)).

Hence the theorem follows.

From Theorem 4.6, Theorem 4.7 and Theorem
4.11 we have the following result.

Theorem 4.12 Let f : (X,T) — (Y U) be a
bijection. Then the following statements are equiv-
alent:

(1) f is a homeomorphism.

(2) f is continuous and closed.

(3) f(cI(A)) = cl(f(A)) for each IFS A of X.

(4) cl(f~1(B)) = f~\(cl(B)) for each IFS B of Y.

(5) f~H(int(B)) =
Y.

int(f~Y(B)) for each IFS B of

(6) int(f(A)) = f(int(A)) for each IFS A of X.

5. Category of intuitionistic fuzzy topolog-
ical spaces

Let CFt be the category of all Chang’s fuzzy topo-
logical spaces and fuzzy continuous maps and IFt
the category of all IFTSs and continuous maps.

Recall([3]) that there are functors Gy, Gy : IFt —
CFt defined by

Gi(X,T) = (X,G4(T)) and Gy(f) =/,
where G] (T) = {,UA [ A= (p‘Aa’YA) € T}7
Go(X,T) = (X,Go(T)) and Ga(f) = f,

where Go(T) = {1 —vya | A= (pa,v4) € T}.
Theorem 5.1 Define F; : CFt — IFt by

and }Pl(f) = f’

where Fi(T) = {A = (1a,7a) | 1a € Typa 4+ 74 <
1}. Then Fy is a functor.

Proof. First, we show that Fy(T) is an IFT.
Clearly 0.,1. € Fi(T). Let Ay = (j4,,74,), A2 =
(uAa77A2) in Fl(T) Then Ba,pa, € T and pg, +
Y4 <1, pa, + 74, <1 So ps €1~y and
Bay 1 -—va,. Thus pa, Apg, < (1 —7y4)A (1~
Y4,) = 1= (74, V 74,)- Hence g Apa, € T and
(ma A pay) + (va, vV v4,) < 1. Thus

FI(X'IT) - (val(T))

A Ay = (pa, A pay, 74, YV va,) € F1(T).

Let A; = (pa,,74,) € Fi(T) for all i € I". Then for
eacht €', pug, € Tand pg,+74, < 1. SoVus €T
and (V pa,) -+ (A7va) < 1. Hence

UAi = (Vua, Ava) € 1(T).

Therefore (X, Fi(T)) is an IFTS. Next, we show
that if f: (X,T) — (Y,U) is fuzzy continuous then
f (X, Fi(T)) — (Y, F1(U)) is continuous. Let B =
(1B, v8) € Fi(U). Then pp € U and pp + vp <
1. Since f : (X,T) — (Y,U) is fuzzy continuous,
S Yus) € T. Since pp + v < 1, f Y up)(z) +
[ (1)) = pa(f(@) + 18(f() <1 for any @ €
X. So f(ug) + f'(78) <1 and hence

fHBY = (fws), fH(v8)) € FA(D).

Therefore f : (X, Fy(T)) — (Y, F{(U)) is continu-
ous. In all, Fj is a functor.

Theorem 5.2 The functor Fy : CFt — IFt is a
left adjoint of the functor Gy : IFt — CFt.

Proof. For any (X,T) in CFt, 1x : (X,T) —
Gl (X, T) = (X,T) is a fuzzy continuous map.
Consider (Y,U) € IFt and a fuzzy continuous
map f : (X,T) — G(Y,U). In order to show
that f : Fy(X,T) = (X, (7)) — (Y,U) is a
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continuous map, let B = (ug,vg) € U. Then
pp € Gif). Since f : (X,T) — Gi(Y,U) =
(Y, G1(Y)) is fuzzy continuous, f~'(up) € T. Since
up +v8 < 1, f Y ug) + f1(vg) < 1 and hence
JNB) = (f Hps),f'(y8)) € Fa(T). Thus [ :
Fi(X,T) — (Y,U) is continuous. Therefore 1y is a
(G1-universal map for (X,7’) in CFt.

Theorem 5.3 Define F, : CFt — IFt by
B(X,T) = (X, F5(T)) and Fy(f) = f,

where Fo(T) = {A = (A4,04) | 1-04 € T, Aq+64 <
1}. Then F; is a functor.

Proof. First, we show that F3(T) is an IFT.
Clearly 0..,1. € FQ(T) Let 4; = ()‘AnoAl)’ Ay =
(’\A'szAz) in Fg(T) Then 1 — HA” 1- 0,42 €T and
A, +04, <1, A4,+604, <1. So1—(04,V04,) = (1—
6A|)/\(1_0A2) € T and (AA1 A/\A2)+(0Al V0A2) <1.
Thus

A1 NV Az = (Mg, A Ag,, 04, V0,4, € Fg(T).

Let A; = (A4,,04,) € Fi(T) for all 4 € I'. Then
foreachi € I', 1 — 04, € T and Ay, + 64, < 1. So
1—/\0141' = V(].—GA') € T and (V )‘A1)+(/\ 0Ai) < L.

Hence

UAi = (V )\A,,/\HA;) € FQ(T)

Therefore (X, F5(7")) is an IFTS. Next, we show
that if f : (X,T) — (Y,U) is fuzzy continuous then
(X, Fx(T)) — (Y, F»(U)) is continuous. Let B =
(/\3,03) S l’E(U) Then 1 —0g € U and Ag + 0 <
1. Since f : (X,T) — (Y,U) is fuzzy continuous,
1- fAl(OB) = f‘l(l —0g) €T. Since Ag+ 65 < 1,
1 08) @)+ H08)(2) = Ap(f(@) +05(f (@) < 1
forany z € X. So f '(Ag)+f 1(6p) < 1 and hence

[7H(B) = (' (Ap), f7'(6p)) € Fa(T).

Therefore f : (X, Fo(T)) — (Y, F»(U)) is continu-
ous. In all, F; is a functor.

Theorem 5.4 The functor Fp : CFt — IFt is a
left adjoint of the functor G, : IFt — CFt.

Proof. For any (X,T) in CFt, 1x : (X,T) —
GoF5(X,T) = (X,T) is a fuzzy continuous map.
Consider (Y,U) € IFt and a fuzzy continuous
map [ : (X, T) — Go(Y,U). We will show that
[ (X, T)= (X, F5(T)) — (Y,U) is a continuous
map. Let B = (up,vs) € U. Then 1 —vp € Go(U).
Since f : (X, T) — G, U) = (Y,G:{U)) is
fuzzy continuous, 1 — f~(yp) = f (1 —vg) € T.
Since pup +vp < 1, f Y pup) + fHyB) < 1 and
hence f~1(B) = (f~'(up), f'(v5)) € F2(T). Thus
[ (X, T) — (Y,U) is continuous. Therefore 1y
is a Gy-universal map for (X, T) in CFt.

Let (X,T') be a Chang’s fuzzy topological space.
ThenT, = {A = (ua,1—p4) | pa € T}isan IFT. In

this case, we call I}, a c-intuitionistic fuzzy topology
and (X, T.) a c-intuitionistic fuzzy topological space.
Also c-IFt denote the category of all c-intuitionistic
fuzzy topological spaces and continuous maps.

Theorem 5.5 Two categories CFt and c-IFt
are isomorphic.

Proof. Defined F': CFt — c-IFt by
F(X,T)=(X,Tc) and F(f) = /[

Consider the restriction G : c-IFt — CFt of
the functor G in the beginning of this section.
Then F and () are functors. Clearly GiF(X,T) =
Gi(X,T,) = (X,G1(1T.)) = (X,T). In order to show
that FG1(X,T) = (X,T), let (X,T) € c-IFt and
A = (pa,va) € T. Then y4 =1 —pg. So py €
G1(T) and hence A = (pa,v4) = (a,1 — pa) €
(GI(T))C Thus FGl(X,'T) = F(X,GI(T)) =
(Xv (Gl(ﬂ)c) = (X,’r)

Theorem 5.6 The category c-IFt is a bireflec-
tive full subcategory of IFt.

Proof. Clearly c-IFt is a full subcategory of
IFt. Take any (X,7) in IFt. Let 7* = {A ¢
T | A= (4,1 —p4)}. Then (X,T*) € c-IFt
and 1y : (X,7) — (X,7T*) is a continuous map.
Counsider (Y,U) € ¢-IFt and a continuous map f :
(X,T) — (Y,U). We need only to check that [ :
(X, T*) — (Y,U) is a continuous map. Let B € U.
Since (Y,U{) is a c-intuitionistic fuzzy topological
space, B = (up,1 — pup). Since f: (X, T) — (Y,U)
is continuous, f~1(B) € T. Also,

S(B) (f Nps), f 11— up))
(f Nus),1 = f (uB)).

Thus f~1(B) € T*. Hence f : (X,T*) — (Y,U) is
a continuous map.

Corollary 5.7 The category CFt is a bireflective
full subcategory of IFt.

References

1. K.T.Atanassov, Intuilionistic fuzzy sets, Fuzzy
Sets and Systems, 20, 87-96, 1986.

2. C. L. Chang, Fuzzy topological spaces, J. Math.
Anal. Appl., 24, 182-190, 1968.

3. D. Coker, An introduction to intuitionistic
Sfuzzy topological spaces, Fuzzy Sets and Sys-
tems, 88, 81-89, 1997.

4. D. Goker and A. Haydar Eg, On fuzzy compact-
ness in intuitionistic fuzzy topological spaces, J.
Fuzzy Math. 3, 899-909, 1995.

5. H. Giir¢ay, D. Coker and A. Haydar Es, On
fuzzy continuity in intuitionistic fuzzy topolog-
ical spaces, J. Fuzzy Math., 5, 365-378, 1997.

—230—



