The Third AF35(1998). 213224

v-FUZZY FILTER AND LIMIT STRUCTURE

Yoon Jin LEE

Department of Mathematics, Yonsei University, Seoul, 120-749 Korea

Tel : +82-02-361-2580 Fax :

Abstract

+82-02-392-6634 E-mail : yjlee@math.yonsei.ac.kr

We introduce the notion of y-fuzzy filter and v-limit structure to L-fuzzy points. We
show that the category yLim of y-limit spaces is a cartesian closed topological construct
containing the category LFTop" of stratified L-fuzzy topological spaces as a bireflective
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1. Introduction

In general and fuzzy topological spaces the notion
of limit structures with respect to points and fuzzy
points was defined as to generalize the notion of
neighborhood systems which characterizes topolo-
gies. So it provided a good tool of interpreting the
topological structures. Filters and prefilters on a

set X, the subjects of convergence, were defined as
a subset of LX, where L = {0,1} and L = [0, 1],
respectively and in [1], P. Eklund and W. Gahler
made some generalization of filter by defining L-
fuzzy filter as a map from LX to L, where L is
a completely distributive complete lattice. But it
seems to be impossible for L-fuzzy filter to include
prefilter which generalizes usual filter. In fact, a
prefilter on a set X is a map from [0, 1]¥ to {0, 1}.

In this paper, we generalize L-fuzzy filter by in-
troducing two completely distributive chains L, L'
and a map v : L — L' satisfying some conditions.
We define the notion of y-fuzzy filter on a set X by
a map from L* to L’. Then it can include not only
L-fuzzy filter with completely distributive chain L
but also prefilter. We introduce the notion of v-
limit structure of y-fuzzy filters to L-fuzzy points.
Then this structure turns out to be a generaliza-
tion of both limitierung and fuzzy limitierung in
general and fuzzy topological spaces, respectively.
And from the categorical point of view the cate-
gory vLim with objects 7-limit spaces and mor-
phisms y-continuous maps is shown to be cartesian
closed topalogical category containing the category
LFTop" of stratified L-fuzzy topological spaces and
continuous maps as a bireflective subcategory. It is
a generalized result of those in general and fuzzy
topological spaces since we use Lowen’s definition
of fuzzy topology in limit structure theory.

v-fuzzy filter, (stratified) L-fuzzy topology, y-limit structure.

2. Preliminaries

Let X be a set. Let F(X) be the collection of all
prefilters on X and X be the set of all fuzzy points
in X.

A fuzzy limitierung [6] A is a map from X into
P(F(X)), subject to the following axioms: for each
z) € X,

(LO) F € A(z,) implies & € F for all a > 1 — A,
where @ is a constant map on X with value
a€l,

(L1) oy = {A e IX : pa(z) > 1 -2} € A(zy),
{(L2) if F € A{zy) and F C G, then G € A(z)),
(L3) if F, G € A(z,), then FNG € A(zy).

The pair (X, A) is called a fuzzy limit space. Given

fuzzy limit spaces (X, A) and (Y,A’) the map f :
X — Y is said to be fuzzy continuous if for any
fuzzy point z in X and F € A(z)), the prefilter
f(F)={BeI¥: f(A) < Bforsome A € F} €
A'(f(z)x)-

Let FLim be the category of all fuzzy limit spaces
and all fuzzy continuous maps between them.

Theorem 2.1 FLim is a cartesian closed topolog-
tcal category.

Theorem 2.2 FTop is a bicoreflective subcategory
of FLim.

If we substitute [0,1] by {0,1}, the two point
chain, the notions of fuzzy topology and fuzzy lim-
itierung are equivalent those of topology and limi-
tierung, respectively and we have the analogous re-
sult.
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Theorem 2.3 Lim is a cartesian closed topological
category.

Theorem 2.4 Top is a bicoreflective subcategory
of Lim.

For any completely distributive complete lattice
L with different least and last element Oy and 1
and for any set X, an L-fuzzy filter [3] on X is a map
M : LX — L such that the following conditions are
fulfilled:

(F1) M(@) < a for all @ € L and M(1) =1,
(F2) M(f A g) = M(f) A M(g) for all f, g € LX.

3. L-fuzzy topological space and y-fuzzy fil-
ter

Let L be a completely distributive chain with dif-
ferent least and last elements denoted by 0; and
1,. For any set X an L-fuzzy topology t on X is a
non-empty subset of L* which contains 0, 1, and
is closed under arbitrary supremum and finite infi-
mum. A pair (X,t) is called an L-fuzzy topological
space (for short, L-fts) and the elements of t are
called open L-fuzzy subsets of (X,t). If s and ¢ are
L-fuzzy topologies on X, s is said to be finer than
t and ¢t is said to be coarser than s provided t C s
holds. An L-fuzzy topology t is said to be stratified
ifaetforall € L.

In an L-fts (X, t), define int : LX — LX by

int f = v g.
get
g9<f
Then int f is the greatest open L-fuzzy subset
less than or equal to f and the map int satisfies the
following properties.

(I1) int Ty = 1.
(I2) int f < f and int(int f) = int f for all f € LX.
(I3) int (f A g) =int f A int g for all f, g € LX.

Conversely, if for any f € LX there corresponds
an L-fuzzy set int f such that the conditions (I1),
(I2) and (I3) are satisfied, then there exists a unique
L-fuzzy topology t = {f € LX :int f = f} on X
with interior operator int.

Let L' be another completely distributive chain
with different least and last element 0y and 1;.
and y : L — L' be a surjective map satisfying the
following conditions:

(i) v(1L) = 1o and y(a) = Opr iff a = O,
(i1) v preserves the arbitrary supremum.

From now on, let completely distributive chains
L, L' and the map v : L — L' be fixed.

Definition 3.1 Let X be a non-empty set. A map-
ping M : L*X — L' is called a y-fuzzy filter if it
satisfies the following conditions:

(YF1) M(@) < y(a) foralla € Land M(1.) = 11,

(YF2) M(fAg) = M(f)AM(g) for all f, g € L*.

Clearly, M(0z) = 01, and M preserves the order
of LX.

Example 3.2 (i) If L = L' = {0,1}, then y: L —
L' = idx and the v-fuzzy filter is an usual filter.
(ii) f L = [0,1] and L' = {0,1}, then v : L — L'
isar— 0ifa=0and o — 1if o > 0 and the
~-fuzzy filter is a prefilter.

(iii) If L = L' is an arbitrary completely distributive
chain and v : L — L' = i¢dy, then the y-fuzzy filter
is an L-fuzzy filter [3].

For any set X, let F,(X) be the set of all y-fuzzy
filters on X and for M, N € F,(X), we say that
M is finer than N and AN is coarser than M if
M(f) > N(f) for all f € L*X and we denote this
by M > N. With this order, F,(X) is a partially
ordered set.

For any sets X and Y and amap f: X — Y, the
map F,f(M) : LY — L' defined by F., f(M)(g) =
M(go f) for all g € LY is a y-fuzzy filter on Y and
we write F., f(M) simply by f(M).

Notice that for any completely distributive chain
(L, <), the associated pair (L,<), where z <y iff
x>y for all z, y € L is also a completely distribu-
tive chain.

In the sequel we assume that L satisfies the con-
dition : there exists a unique order-preserving one-
to-one correspondence from (L, <) to (L, <).

We denote the image of A by this map by A\*.

For v : L — L' and A\ > 0y, define a map v, :
L— L by

0L
¥(a)

if a<A*
if a> A%

() = {

Proposition 3.3 v, preserves finite infimum and
arbitrary supremum.

Proof. It can be easily checked.

For any set X, x € X and A > 0p, an L-fuzzy
point z, in X is an L-fuzzy set on X defined by

A ify==
za(y) = { 0;, otherwise.

Proposition 3.4 For any L-fuzzy point x),

H: LX — L

= () = nlf(=)
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s a y-fuzzy filter.
Proof. (yF1) is immediate from the definition of
x'y and (yF2) follows from Proposition 3.3.

So there exists a one-to-one correspondence be-
tween L-fuzzy topologies and interior operators.

Proposition 3.5 Let (X,t) be an L-fts. Then for
any L-fuzzy point x, in X, the map
Ni(zy): LX — L'
oo Nila) () = maint (@)

s a y-fuzzy filter.

Proof. It is immediate from (I
sition 3.3.

2), (I3) and Propo-

We call the map N (z,) by ¥-fuzzy neighborhood
filter of z in an L-fts (X,1).

Remark 3.6 Let (X,t) be an L-fts. Then for any
L-fuzzy point x5 in X and f € LX,

Ne(zx)(f) = (int f(z))
= n(V 9@) =V nol
get get
9<f 9<f

Proposition 3.7 Let (X,t) be an L-fts. Then an
L-fuzzy set f € t iff for any L-fuzzy point ) in X
and B € L', ya(f(z)) > B implies Ni(z2)(f) > B.
Proof. The only if part is immediate from the fact
that int f = f for all f € . To show the converse,
we note that by the assumption and Remark 3.6,
it holds for any L-fuzzy point z, in X and 8 € L/
if yA(f(z)) > [ then there exists g € t such that
g < f and yx(g(z)) > 8. Let z € X such that
f(z) > 0p and A > f(z)*. Then v\(f(z)) > 01
and hence there exists g,, € t such that g,, < f
and Yx(gz, (z)) > Orr. Let gz = Vx5 (a)+ g, then
g: € tand g; < f. Furthermore, g, (z) = f(z) since
Ta{gz(x)) > O0p: for any A > f(z)*. Let

\VAr

zeX
Flz)>0,

h =

Then f = k and we have the result.

Proposition 3.8 In an L-fts (X,t), Ni(zx) < T
for all L-fuzzy point x) in X and the equality holds
iff fet.

Proof. It is immediate from Proposition 3.7.

Definition 3.9 Given L-fts’s (X,t) and (Y, ¢'), the
map f: X — Y is said to be continuous at an L-
fuzzy point zx in X if My (f(2)2) < f(Ni(z)), ice
N (f(2)r)(g) < Ni(za)(go f) forallg € LY and f
is said to be continuous if f is continuous at each
L-fuzzy point in X.

Let LFTop be the category of all L-fts’s and all
continuous maps and let LFTop* be the full sub-
category of LFTop consisting of all stratified L-
fts’s.

Proposition 3.10 For any L-fts’s (X, t) and (Y,t')
a map f: X — Y is continuous iff g € t' implies
go f €L

Proof. Take any L-fuzzy point z, in X and 3¢ L/

such that yx((go f)(z)) > B. Then 1x(g(f(z))) > 8
and hence My (f(z)x)(g9) > B. Since N;(zy)(gof) >
Ny (f(z)a)(g), the only if part is proved. Take any
L-fuzzy point z in X and g € LY. Then

Ne (f(=)x)(9) V n(h(f(=))

het'
h<g
V 1 (h(z)) = NMi(za) (g 0 ),

ket
k<f

I

IA

since ho f €t and ho f < go f for all h € ¢ such
that A < g. So f is continuous.

4. ~-limit space

Let X be a set and X be a set of all L-fuzzy points
in X.

Definition 4.1 A v-limit structure is a map
q: & — P(F,(X))

subject to the following conditions : M — z,
q
means M € q(z,),
(yYLO) M — z, implies M(@) > var(a) for all
g

a€lL,
(vL1) £\ — x5 for all z, € &,
q

(vL2) if M ——) zy and M < N, then N/ ELY
(vL3) if M, /\/ Y then M AN - a:,\, where

MAN is deﬁned pointwise.
The pair (X, ¢) is called a v-limit space.

Example 4.2 (i) In the case L = L' = {0,1}, the
v-limit structure is a limitierung of filters to usual
points.

(ii) In the case L = [0,1] and L' = {0,1}, the -
limit structure is a fuzzy limitierung [6] of prefilters
to fuzzy points.

(iii) In the case L = L’ is an arbitrary completely
distributive chain and v : L — L' = id;, the
convergence structure [4] of L-fuzzy filters to usual
points induced by the L-fuzzy neighborhood filter
in a stratified L-fts is in fact a v-limit structure.

Definition 4.3 Given v-limit spaces (X,q) and
(Y,q'), the map f: X — Y is called y-continuous if
M — z) implies f(M) — f(z), for all z, € X.

q q
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Clearly, the identity map and the composition of
two y-continuous maps are -y-continuous. We note
that every constant map is <y-continuous since for

any constant map X Wy with value y € Y and

M € F,(X) such that M — z, in X, we have

[YIM)(g) = M(g o [y]) = M(g(y)) = n(9(y)) =
yr(g) for all g € LY.

Let vLim be the category of all 4-limit spaces
and all y-continuous maps.

Theorem 4.4 The category yLim s a topological
category.

Proof. For any family ((X;,qi)):cr in yLim and
any source

(X £> (X‘iaqi))iEIa
define a map ¢ : X — P(F,(X)) by

M € q(zy) iff fi(M) € q;(fi(x),) forallie I.

Then q is a -limit structure and for each i € I the
map f; : (X,q) = (Xi,¢) is y-continuous and for
any -limit space (Y, ¢’) and foranymapg:Y — X
such that f;og: (Y,q¢') = (Xi,¢) is y-continuous
foreachi € I, g: (Y,q') = (X,q) is a y-continuous
map and hence it proves the initiality of q. The
remainder can be easily checked.

Based on the notion of the initial ~-limit struc-
ture, we can define subspaces and products and the
existence of initial structures guarantees that of fi-
nal structures. Here we present an explicit form of
the final y-limit structure without proof.

Proposition 4.5 For any family ((Xi,q:))ics in
yLim and any sink

(X3, q4) EiN X)ier,

define q : X — P(F, (X)) by M € q(z)) iff M >
Ty or M > Ni_, fi.(Mg), where My — (zk),
ke

for some z;, € fi,c_l(a:), ix €landk =1,--- ,n.
Then q is the final v-limit structure on X.

On the basis of the notion of the final v-limit
structure, we can define quotient spaces and co-
products.

For any 7-limit spaces (X,q) and (Y,q'), let
C(X,Y) be the set of all y-continuous maps from
XtoY.

For any 8 € LEX.Y) and k € LX, define a map
8(k): Y —= L by

y— 0(k)(y) = V (0(f) A k(x))
zex,fj‘le)c:(yx,)f)

For any v-fuzzy filters K and M on C(X,Y) and
X, respectively define (M) : LY — L' by

V

8(k)<g
kELx,GELC(X’Y)

gr— K(M)(g) = (K(O) A M(K)) -

We note that if 8(k) < @ then for any f €
C(X,Y)and z € X, 0(f) A k(z) < a and it im-
plies 8 < @or k < @ So K(M)(@) < y(«) and
since L' is completely distributive K(M)(g A h) =
K(M)(g) A K(M)(h) for all g, h € LY. So K(M)
is a y-fuzzy filter on Y.

Let C(X,Y) be the set of all L-fuzzy points
in C(X,Y) and define a map ¢ : C(X,Y) —
P(Fy(C(X,Y))) as follows: for any K €
F(C(X,Y)) and f) € C(X,Y),

(1) K@) 2 7a(a)
(2) for any z, € X and M — x,,
7

K - f,\ iff

C K(M) = F(@).
Proposition 4.6 ¢ is a vy-limit structure on
C(X,Y) with respect to the evaluation map ev :
X xC(X,Y) =Y is y-continuous.
Proof. By the definition of ¢, (yL0) is trivial and
for (yL1) take any fy € C(X,Y). Then fi(a) =
12 (@(f)) = 7a(a) and for any L-fuzzy point z, in
X and M — z,,

g

(M) (g)

O(k)<g
keLX 9cLCXY)

B(k)<g
keLX geLCIX.Y)

(£6) n Mk

(a(8(f)) A M(k))

forallge LY. Take @ = f;, and k = go f, then

0(k)(y) = fi(go F)ly)
= V (fio(m) A (go f)(z))
zGXTnn(LwE)C:'(yX,Y)
= V (ehHe) =9
zef~y)
and

MAO()) AM(K) = (1) AM(go f) = M(go f).
So fa(M)(g) > M(go f) = f(M)(g) for all g € LY
and since f(M) — f(z)r, we have f\ - I

(vL2) and («L3) are routine.
limit structure on C(X,Y).

In all, ¢ is a v-
To show that ev is
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y-continuous, let & — (z,f), in X x C(X,Y).

Then 71 (®) — x5, m(®) — fr, where m; and
g c

7y are the first and second projection maps from

X < C{X,Y) to X and C(X,Y) respectively. Thus

72 (®)(m (®)) — f(z)x. So it is enough to show
"

that ev(®) > my(®)(m1(®)). For any g € LY,
ma (@) (1 (®))(9)

flk)<g
keL™, 9eLC!* )

8(k)<g
kel geLCXY)

9(k)<g
keLX geLCXY)

(m2(2)(8) A i (@) (k))
(8(0 0 m3) A B(k o))

®(fomy ANkom)

and for any & € LX and 8 € LYXY) such that
8(k) < g, (Bom Akom)(z,h) = 6(h) Ak(z) <
B(k)(h(x)) < g(h(z)) = (goev)(z, h) for all (z,h) €
X x C(X,Y). So mp{®)(m1(®)) < ev(®) and it is
proved.

From now on, we assume that C(X,Y) is
equipped with the ~-limit structure ¢ in Proposition

4.6, which is called the continuous y-limit structure
on C(X,Y).

Proposition 4.7 Let (X,q), (Y,¢') and (Z,¢") be
v-limit spaces and f : X x Z — Y be a y-continuous
map. Then there exists a unique y-continuous map
f:Z2 = C(X,Y) such that evo (1x x f) = f.
Proof. Define a map f:Z - CXY) by

fz)(z) = flz,2)(z € X,z € Z). Then for each
€7,

flz): x by oz 4y

is y-continuous, where [z] : X — Z is a constant

map with value z. To show that f is y-continuous,

let £ — z5. Then f(L)(@) = L(@o f) = L(&a) >
q’/

vx{a). Let M — z. Then for any g € LY,
q

V

6(k)<g
keL™, geLCXY)

= V (L(B o ) A M(k)).
o(k)<g
k€LY, 9eLcxY)

fiM)(g) = (F(L)(8) A M(K))

Define M x £ : LX*% 5 L' by
h r— (M x L){h)

-

uomyAvong<h
u€L¥, veLl?

(M(u) A L(v))

where mi(h)(z) = Vaiezh(z,z), m2(h)(z) =

Veexh(z,z). Then M x L is a vy-fuzzy filter on

X xZ. Takeu = kand v = 1, then wom; Avoms <

kom and M(u) A L{v) = M(k) A L) > M(k)

since £ — z). So m (M x £) > M and hence
q

m{M x L) —» z). Similarly, 7e(M x L) — 2.
q q"
Therefore M x £ —— (z, z), and since f is con-
1xq"
tinuous, f(M x L) — f(z, z) and hence it suffices
q’

to show that f(£)(M) > f(M x L). We note that
for any g € LY,

fIM x L)(g)

I

(M x L) (gof)
V M)A L))

uomyAroma<gof
uGL)‘ N UGLZ

Il

and

FLY(M)(g)

8(k)<yg
keL¥ 8L YD

V

6(k)<g
keLX 9eLCXY)

(F(L)(6) A M(k))

il

(L(6 o f) A M(k)) .

Now, for any u € LX, v € L? such that uom Avo
m2 < go f,let k=uand § = f(v). Then

6(k)(y)

S

m{z)=y
zeX, meC(X.\Y)

V

m{r)=y
ze X, meC(X,Y)

m{z)=y
z= X, meC(X,\Y)

V  gfa,2) =

flz,z)=y
rEX, 262

(6(m) A u(z))

i

IN

9(y)

for all y € Y. Furthermore, since fo f = f(v)o f >
v, L(B o f) A M(k) > L(v) A M(u) and hence it is
proved. Obviously ev o (1x x f) = f and such a
map [ is unique.

Theorem 4.8 The category yLim is cartesian
closed.
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5. The relation between LFTop and yLim

For any L-fuzzy topology t on X,

V @ra
(9,x)EF
for some F Ctx L}

t={fel¥ : f=

is the coarsest stratified L-fuzzy topology on X finer
than ¢ and for any L-fts’s (X,s) and (Y,t) if f :
(X,s) = (Y,t) is continuous, then f : (X,s*) —
(Y,t*) is also continuous.

Theorem 5.1 LFTop™* is a bicoreflective subcate-
gory of LFTop.

Proof. For any L-fts (X, t), (X,t*) =% (X,t) is a
bicoreflection.

Proposition 5.2 For any stratified L-fts (X, t), de-
fine a map q¢ : X — P(F,(X)) by

gt(z2) = {M € Fr(X) : M > Ny(zi)}.

Iy —

Then (X, q;) is a y-limit space.

Proof. If M — z,, then M(@) > M (z))(@) =
gt

ya(int@(z)) = va(a). So (yLO) is fulfilled and the

remainder is routine.

Proposition 5.3 For any stratified L-fts’s
(X,t), (Y, ') of f: (X,t) = (Y,t)) is continuous,
then f: (X, q) — (Y,qy) is y-continuous.

Proof. It follows immediately from the fact that
if M > Ni(zy), then f(M)(g) = M(go f) >
Ne(@x)(g o f) > Ne (f(z)r)(9).

Proposition 5.4 For any y-limit space (X, q), de-
fine

tg={feLX for anyzy € X and B L'

Y (f(z)) > B and M 7 Ty
imply M(f) > B}

Then ty is a stratified L-fuzzy topology on X.
Proof. For each o € L, @ € tg, since yy\(a(z)) =
(@) > B and M 7 zy imply M(@) > va(a) > B.
The remainder is immediate from V ¢y fi(z) > A*
iff fi(z) > A* for some ¢ € I and (fy A fo)(z) > X*
iff fi(z) > A* and fa(z) > A*.

Proposition 5.5 For any vy-limit spaces (X,q),
(Y,¢') if f:(X,9) = (Y,q') is y-continuous, then
f:(X,ty) = (Y, ty) is continuous.

Proof. Let g € t,,. Suppose v5((go f)(z)) > 8 for
some L-fuzzy point z) in X and 8 € L' and M —

£ Then 1(g(/(=)) > 6 and [(M) — f@)x,
consequently we have f(M)(g) = M(go f) > 8.

Proposition 5.6 For any vy-limit space (X,q),
g(wx) C g, (z2) for allzy € X.

Proof. Take any M € F,(X) and z, € X and
suppose M —q—) zx. In case My (zA)(f) = 07, it is

clear. If V;, (x)(f) > O, then for any 8 € L' such
that MV (z2)(f) > B there exists g € ¢ such that
g < f and vx(g9(z)) > B. So we have M(g) > 3
and since M preserves the order of LX, M(f) >
M, (z2)(f) and thus M P

q

Proposition 5.7 For any stratified L-fts (X,t), t =

tae-

Proof. Take any f € t. Suppose v\(f(z)) > 8

and M — z, for some M € F,(X), ) € X and
qe

B € L'. Then since

M(f) > M) (f) = ma(intf(z)) = na(f(2)) > B,

we have f € t4,. Conversely, take any f € t,,, then

for any L-fuzzy point z, in X and 8 € L' such that

2 (f(z)) > B and M — z,, it holds M(f) > 3.
gt

So for any L-fuzzy point z, in X and 8 € L' such
that v,(f(z)) > B, M(zA)(f) > B and hence we
have f € t.

Theorem 5.8 LFTop" is a bireflective subcategory
of vyLim.
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